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I. Introduction

During the last decade, the analysis of new microdata has contributed 
to advancing the sticky price literature by challenging existing models 
and fostering the development of new ones. Indeed, current frontier 
models are consistent with several  cross- sectional facts about the size 
distribution as well as the timing of price changes uncovered by the mi-
crodata. An open issue in this research agenda concerns the nature of, 
or the appropriate underlying friction used, to model sticky prices. Two 
alternative assumptions to generate infrequent adjustment of prices in-
volve either a fixed cost, as in the Golosov and Lucas (2007) menu- cost 
model, or a limited  information- gathering and  information- processing 
ability, as in Reis’s (2006) “rational inattentiveness” setup. Following 
the descriptions used in the literature, we refer to these types of mod-
els as “state- dependent” models or “time- dependent” models.1 Some 
scholars argue that information frictions will generate stronger real ef-
fects of monetary policy shocks (e.g., Mankiw and Reis 2002; Klenow 
and Kryvtsov 2008), but a systematic comparison of the consequences 
of each of these mechanisms for the transmission of monetary policy 
shocks has not been developed. Under what circumstances does the 
nature of the underlying friction matter for the propagation of mon-
etary shocks? What kind of empirical evidence can be used to identify 
the nature of the underlying friction? This paper casts light on these 
questions by presenting new theoretical results and some evidence that 
bears upon such theories.

The first part of the paper formalizes the definition of time- dependent 
and  state- dependent models (TD and SD, respectively), and analyzes 
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the propagation of monetary shocks under the different frictions. The 
class of models we consider embeds (approximately) several classic 
sticky price models, such as Taylor (1980), Calvo (1983), Reis (2006), 
Golosov and Lucas (2007), Nakamura and Steinsson (2010), Midrigan 
(2011), Bonomo, Carvalho, and Garcia (2010), Bhattarai and Schoenle 
(2014), Carvalho and Schwartzman (2015), and several other cases that 
are novel in the literature. All the models considered are characterized 
by the presence of idiosyncratic shocks with continuous paths. We con-
centrate on three types of analytical results which, taken together show 
that what distinguishes  state-  and time- dependent models is their reac-
tion to a large aggregate shock.

Our main finding is that for small shocks the nature of the friction is 
irrelevant, that is, the propagation of the nominal shock is the same in 
 state-  and time- dependent models provided that the models are fit to 
the same  steady- state moments.2 

More specifically, in our first result we follow the lead of Caballero 
and Engel (2007) and analyze the impact effect of a monetary shock on 
inflation, a statistic they refer to as the “flexibility index.” This statistic 
corresponds to the impact effect (i.e., the initial point) of the impulse 
response function: the inflation reaction at the time of the shock. We 
show that the flexibility index is always zero in TD models. More sur-
prisingly, we show that the shock does not have a  first- order effect on 
the aggregate price even in SD models, so that for small shocks the 
impact is approximately zero provided that firms follow an Ss decision 
rule (possibly multidimensional) and that the shocks faced by the firms 
follow a diffusion. 

Our second result extends this irrelevance beyond the impact effect 
by considering the total cumulated output response triggered by a small 
monetary shock (measured by the area under the output impulse re-
sponse function). For economies with low inflation we show that the 
total cumulated output response is the same in TD and SD models pro-
vided the models are fit to the same  steady- state moments, namely, that 
they have the same frequency of adjustment and the same kurtosis of 
the size of price changes. These results are quite robust: we show that 
they also apply in the presence of moderate rates of  steady- state infla-
tion. One message from these results is that, as long as one is interested 
in understanding the propagation of small monetary shocks, then what 
matters are these important moments that the models are fitted to (fre-
quency and kurtosis), while the underlying nature of the nominal fric-
tion is irrelevant.
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The third result highlights a key difference between SD and TD mod-
els, which appears when the aggregate shock is large. In TD models 
the impulse response function of prices at any given horizon is propor-
tional to the size of the shock. Furthermore, as implied by our previous 
results, the impact effect of the shock on aggregate prices is zero for any 
shock size. These features imply that the shape of the impulse response 
does not depend on the size of the shock. Instead, the inherent nonlin-
ear nature of decision rules of SD models implies that for aggregate 
shocks above a minimum size, the economy displays full price flexibil-
ity. Thus, for SD models the impact effect of the shock depends on their 
size. This prediction suggests a simple test for the nature of the fric-
tion behind sticky prices: TD models predict a proportional response 
in terms of the size of the shock, while SD models predict a nonlinear 
response with respect to the size of the shocks.

The second part of the paper presents an empirical investigation of 
the hypothesis, inspired by the above theoretical results, that the re-
sponse of inflation to a monetary shock, particularly on impact, de-
pends on the size of the shock. We follow the international economics 
literature that studies the pass- through of exchange rate shocks on to 
prices, as in, for example, Burstein and Gopinath (2014). In particular, 
we use a panel of monthly data from a large number of countries about 
CPI inflation and the nominal exchange rate (bilateral exchange rate 
versus the dollar). To keep in line with the theory, we restrict atten-
tion to countries with moderate inflation in the post–Bretton Woods  
period.3

Our empirical exploration uncovers some evidence of a nonlinear 
pass- through of devaluation on inflation for a sample that excludes 
countries in a fixed exchange rate regime as classified by Levy- Yeyati 
and Sturzenegger (2003) and Ilzetzki, Reinhart, and Rogoff (2008). This 
evidence is consistent with the prediction that the inflation response 
to an exchange rate shock depends on the size of the shock. For in-
stance, in the month following the shock the elasticity of inflation with 
respect to a 5.5% shock is almost two times larger than the elasticity 
to a 1% shock. Interestingly, those differences can be noticed only in 
the first months after the impact and eventually disappear, consistent 
with the view that large shocks trigger a faster response of the econ-
omy. Our baseline results are robust to including countries in a fixed 
exchange rate regime in the post- 1990 sample, and holds with different 
functional form specifications (piecewise linear, quadratic and cubic, 
or distributed lags), as well as different controls (e.g., for fixed versus 
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flex exchange rate regime, GDP growth rates). We also highlight some 
dimensions along which these empirical patterns are not robust. The 
nonlinear effect is not robust to the introduction of fixed exchange rate 
countries into the full sample, and it is not robust to removing outliers 
as defined by the size of the large devaluations. In particular, remov-
ing the largest devaluation from the sample drastically increases the 
standard errors of the nonlinear coefficient on impact, making them 
statistically not significant at conventional confidence levels.4 Neverthe-
less, dropping large outliers either increases or yields very similar point 
estimates of the nonlinear coefficient.

A. Novelty and Relation to Literature

Our analysis is inspired by the work of Klenow and Kryvtsov (2008). 
Like them, we also aim at investigating the nature of the frictions that 
underlie sticky prices. The two papers, however, have a different fo-
cus. Their pioneering paper mostly focuses on the documentation of 
the microfacts and on assessing the success of several classic models 
(encompassed by our framework) in matching the  cross- sectional data. 
Their analysis does not investigate how the different models behave in 
response to an aggregate shock, which instead is the focus of our anal-
ysis. We aim to identify the implications of the different frictions for the 
propagation of aggregate shocks, and provide original analytic results 
that are useful for a systematic comparison of the two approaches. Our 
empirical exploration shares the objective of Gagnon, Lopez- Salido, and 
Vincent (2012) of identifying the extent to which pricing behavior dis-
plays  state- dependent features.5

Our first result extends the theoretical analysis of Caballero and En-
gel (2007) about the aggregate flexibility of an economy, which focuses 
on the impact effect of a monetary shock. We analytically show that in 
several TD and SD models of the last generation featuring idiosyncratic 
shocks, a small monetary shock does not have a  first- order effect on the 
aggregate price level. Second, this paper unifies recent results that focus 
on the full profile of the impulse response function, not just on the im-
pact effect. These results build on, and extend, previous contributions 
in Alvarez and Lippi (2014), Alvarez, Le Bihan, and Lippi (2016), and 
Alvarez, Lippi, and Paciello (2016). We generalize the previous results 
by showing that they also hold in settings that feature both  state-  and 
time- dependent frictions as considered by Abel, Eberly, and Panageas 
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(2007, 2013), Alvarez, Lippi, and Paciello (2011), Bonomo et al. (2010), 
and Bonomo et al. (2016).

While the class of models we analyze is large, we comment next on 
some models that do not belong to it. For instance, in models with no 
idiosyncratic shocks such as Sheshinski and Weiss (1983), and the clas-
sic analysis of monetary shocks in this environment by Caplin and Spul-
ber (1987) and Caplin and Leahy (1991), small monetary shocks have a 
 first- order impact effect on inflation. We discuss the relation with these 
results in detail in section IV.A. Moreover, our setup with idiosyncratic 
shocks with continuous paths rules out models where firms are hit by 
infrequent and large idiosyncratic shocks, as considered by Gertler and 
Leahy (2008) or Midrigan (2011). While not all of our theoretical results 
hold as stated for these models, the main idea still applies. In particular, 
small monetary shocks have no impact effect (i.e., they are second or-
der), but large monetary shocks have a  first- order effect due to the state 
dependence of the decision rules.

Our paper also provides some novel empirical analysis of the non-
linear pass- through prediction. Even though most of the pass- through 
literature focuses on the magnitude of linear terms (e.g., Burstein and 
Gopinath 2014; Campa and Goldberg 2005; Martins 2005), there at least 
two papers that test for nonlinearities with a specification that is simi-
lar to ours. Pollard and Coughlin (2004) study the nonlinear response 
to exchange rate shocks of US industries using import prices and find 
that firms in over half the industries respond asymmetrically. Bussiere 
(2013) studies the nonlinear response to exchange rate shocks using im-
port and export prices of G7 countries and finds evidence, with a speci-
fication similar to ours, of a nonlinear response in  country- by- country 
regressions, as well as in panel regressions. A recent paper by Bonadio, 
Fischer, and Saure (2016) analyzes the pass- through into import and 
export prices using disaggregated daily data for Switzerland following 
the large appreciation (11%) of the Swiss franc in January 2015. This 
case study shows that the speed of the exchange rate pass- through is 
high in the case of this large shock: the half life of the shock is slightly 
above one week.

More broadly, we see our paper as a contribution to the burgeon-
ing literature on nonlinear effects in macroeconomics. Examples of this 
literature are the macrofinance models such as Brunnermeier and San-
nikov (2014), as well as the models featuring the zero lower bound such 
as  Fernandez- Villaverde et al. (2015). In these models, shocks in differ-
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ent regions of the state space have differential effects, which turns out 
to be important for policy. Our contribution focuses on the differential 
effect of shocks according to their size, as in the seminal empirical anal-
ysis of fiscal policy by Giavazzi, Jappelli, and Pagano (2000), and the 
more recent quantitative models as in, for example, Kaplan and Vio-
lante (2014). The class of SD models we analyze, like these models, fea-
tures a size asymmetry in the economy’s response to small and large 
shocks. The application and the models are, of course, different: we fo-
cus on how prices respond to aggregate nominal shocks, they focus on 
the consumption response to fiscal shocks. Also, we offer some explor-
atory evidence of the nonlinear pass- through of nominal exchange rate 
changes on inflation using a large panel of countries.6

B. Organization of the Paper

The next section gives a broad, nontechnical overview of the model-
ing setup and a summary of the main results. Section III describes the 
setups we use to analyze  state- dependent models and time- dependent 
models, as well as a setting featuring both time-  and  state- dependent 
features. Section IV outlines the main theoretical results we derive for 
these economies concerning the propagation of monetary shocks. We 
first discuss the result on the equivalence between these models in the 
presence of small monetary shocks. Next, we discuss the differences 
between these models that appear with large shocks. Section V presents 
the empirical analysis, and section VI concludes.

II. Overview of Main Results

We start by defining the elements for  state- dependent (SD) and time- 
dependent (TD) setups. A  state- dependent setup is one where price 
changes occur if the state, given by current profits or markups, attains 
a critical level. The SD models are characterized by decision rules that 
depend on the value of the state. In the presence of adjustment costs 
necessary to model sticky prices, the state space of the problem is split 
in two regions, one where inaction is optimal and another where the 
firms find it optimal to adjust prices to return the state to a point located 
well inside this set. Price changes occur when the state reaches the 
boundary of the inaction region. A time- dependent model is one where 
the times between consecutive price changes are statistically indepen-
dent of the state (e.g., the current markup or profits of the firm). Instead, 
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the time elapsed since the last price change (and potentially the dura-
tion of the previous price spell) completely determines the hazard rate 
of price changes. We show how the decision rules that correspond to 
TD or SD can be derived from an explicit profit maximization problem 
in the presence of fixed cost to observing the state (co > 0) or fixed cost 
to adjusting the nominal price (cm > 0), respectively.

Our analysis focuses on the propagation of a permanent unexpected 
shock δ, measuring the change (in log points) of the nominal marginal 
cost of all firms, starting from the steady state of an economy with an 
inflation rate π and idiosyncratic shocks with variance σ2. There are 
three theoretical results that we discuss. The first result concerns the 
impact effect of δ on the price level. For this result we do not need to 
specify the whole economy, instead we just take a continuum of firms 
that solve the type of problem described above and that face a common 
(once and for all) nominal cost shock.7 We show that for both TD and 
SD models a small monetary shock δ has a  second- order effect on the 
price level P (δ, t) on impact, for any π > 0 provided that σ > 0. Formally, 
let P (δ, t) be the price level t ≥ 0 periods after an unexpected increase 
of the money supply of size δ. This implies 

 P(d, t) = Q(d) +
0

t

∫ u(d, s)ds, (1)

where Q(d) denotes the impact response of the price level at the time 
of the shock. In particular, we show that in all TD, SD, and mixed 
models, we have that ʹQ(0) = 0, that is, that there is no  first- order ef-
fect of the monetary shock on the price level. An illustration of this 
result can be seen in figure 1, which plots the response of output to a 
permanent monetary shock for three economies characterized by the 
same frequency of price changes per year (normalized to unity) and 
different kurtosis of the size distribution of price changes. It appears 
that as the 1% shock hits the economy, output increases by approxi-
mately 1% in all economies, since the CPI does not respond on im-
pact.8 This result is of interest because it clarifies previous analyses of 
the impact effect. For instance, Caballero and Engel (2007) propose a 
theoretical characterization of the impact effect, ʹQ(0), which they refer 
to as the flexibility index, as a way to characterize different sticky price 
models. Thus in a large class of models, with σ > 0 and π > 0, the flex-
ibility index is zero.

While monetary shocks do not have a  first- order impact on the ag-
gregate price level in neither TD nor SD models, the reason behind this 
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result is different. For TD models, the distribution of the number of 
firms adjusting at different times is independent of the aggregate shock. 
Thus, the aggregate price level does not jump on impact, that is, 
Q(d) = 0 for all δ. For SD models the result is due to the fact that there 
is no “mass” of firms close to the adjustment boundaries (literally, a 
zero density), which in turn is explained because the boundaries are 
exit points where all firms adjust.9 Thus, in SD models Q(d) is of order 
δ2, so small shocks trigger extremely small jumps.

An important property of the impact effect concerns how it changes 
as a function of inflation, π, relative to the volatility of the idiosyncratic 
shocks σ. While for σ > 0 the impact effect Θ is of order δ2, we notice 
that the impact effect is increasing with π and that the effect becomes 
first order as π / σ diverges. The menu- cost models of Sheshinski and 
Weiss (1983) and Caplin and Spulber (1987) illustrate this point: in both 

Fig. 1. Output response to a monetary shock of size δ = 1%
Note: The figure represents an economy with ε = 1, N(∆pi) = 1.0, and std(∆pi) = 0.10. The 
three curves correspond to economies with a steady state kurtosis of the size of price 
changes equal to 1, 2, and 6, respectively.
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models the impact effect Q(d) is of order δ, the reason is that in these 
models σ = 0 and π > 0, so that the ratio diverges. Thus, since the impact 
effect is second order but it is increasing in π, in the empirical analysis 
we will focus on low- inflation countries where the lack of response to 
small shocks should be easier to detect.

The second result goes beyond the analysis of the impact effect and 
considers a summary measure for the whole profile of the impulse re-
sponse function. We derive this second result focusing on economies 
where the  steady- state inflation equals (or is close to) zero.10 Moreover, 
for this result we completely specify a general equilibrium effect, so the 
shock is interpreted as a monetary shock. Specifically, the summary sta-
tistic that we choose is the area under the output impulse response func-
tion following an increase of the money supply of size δ. We denote this 
magnitude by M(d), for example, the area that appears for illustrative 
purposes in figure 1 for three models with kurtosis equal to 1, 2, and 6, 
respectively. Formally, the cumulative output M after a shock δ is: 

 M(d) = 1
´ 0

∞

∫ (d − P(d, t))dt (2)

where P(d, t) is the aggregate price level t periods after the shock δ. The 
argument of the integral gives the aggregate real wages at time t, which 
are then mapped into output by 1 / ε, a parameter related to the elastic-
ity of the labor supply. Integrating over time gives the total cumulative 
real output. We find the M statistic convenient for two reasons. First, it 
combines in a single value the persistence and the size of the output 
response, and it is closely related to the output variance due to mone-
tary shocks, which is sometimes used in the literature.11 Second, for 
small monetary shocks (like the ones typically considered in the litera-
ture) this statistic is completely encoded by a simple formula that in-
volves the frequency of price changes N(Dpi) and the kurtosis of price 
changes Kur(Dpi).

We show that in  state- dependent (SD) and time- dependent (TD) 
models, as well as in models where both TD and SD features, the total 
cumulative output effect of a small unexpected monetary shock de-
pends on the ratio between two  steady- state statistics: the kurtosis of 
the size- distribution of price changes Kur(Dpi) and the average number 
of price changes per year N(Dpi). Formally, given the labor supply elas-
ticity 1 / ´ − 1 we show that for a small monetary shock δ the cumula-
tive output M is accurately approximated by the following expression:
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 M(d) ≈ d

6´

Kur(Dpi)
N(Dpi)

. (3)

An immediate implication of this result is that for small monetary 
shocks the underlying friction is irrelevant (provided the economies 
have the same frequency and kurtosis of price changes).

The explanation of why this result holds is involved, but its interpre-
tation is not. The ratio in equation (3) controls for both the degree of 
flexibility of the economy, as measured by N(Dpi), as well as for the 
presence of “selection” effects, as measured by Kurt(Dpi).12 On the one 
hand, that the cumulative impulse response depends on the degree of 
flexibility is hardly surprising. On the other hand, that the selection ef-
fect is captured completely by the  steady- state kurtosis of prices is, at 
least to us, more surprising. Moreover, that exactly the same expression 
holds for  state- dependent and time- dependent models is, again at least 
to us, revealing. In summary, the reason is that the selection effect oper-
ates equally in terms of the size distribution of price changes (which is 
the mechanism for  state- dependent models) as well as on the distribu-
tion of times between adjustments (which is the mechanism for time- 
dependent models). Our result states that as long as any two models 
produce the same level of kurtosis (of the size of price changes) as well 
as the same average frequency of price changes then the total cumu-
lated output response produced by a monetary shock is the same across 
these models, in spite of the fact that their underlying frictions might 
differ.

The third theoretical result is that TD and SD models behave differ-
ently in response to large shocks. Using the notation of equation (18) we 
have that ′Q (d) = 0 for any value of the shock δ in TD models. This is 
intuitive since the timing of pricing decisions is by definition indepen-
dent of the state. Thus TD models imply an impulse response function 
for the aggregate price level proportional to the size of the shock. For-
mally, for all shock sizes δ there is no impact effect on prices in TD 
models, so that Q(d) = 0. Moreover, TD models have a proportional 
flow effect u(d, t) = u(1, t)d at all horizons t ≥ 0. These two results imply 
that

TDmodels: P(d, t) = P(1, t)d, for all d,

so that the function P(⋅, t) is linear with a zero intercept.
Instead, in SD models we have that ′Q (0) = 0 but ′Q (d) > 0 for δ > 0, 

and thus ′′Q (0) > 0. In particular, SD models imply a minimum shock 
size such that all shocks above this size give rise to full price flexibility 
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(monetary neutrality). Formally, we can show that there is a shock 
d < ∞ such that for all d ≥ d we have Q(d) = d and u(d, t) = 0 or, that 
the economy displays full price flexibility for sufficiently large shocks. 
Thus in SD models P(⋅, t) has unit derivative with respect to δ for large 
values of δ:

SDmodels: P(d, t) = d for all t if d ≥ d,

otherwise P(d, 0) = 1
2

′′Q (0)d2 + o(d2).

We explore the hypothesis of a nonlinear response to nominal shocks 
following the ideas in Burstein and Gopinath (2014) and Campa and 
Goldberg (2005), as well many others in the pass- through literature, and 
use nominal exchange rate fluctuations as a proxy for an “orthogonal” 
nominal shock to the firms’ nominal costs. Since we seek to identify 
the different behavior of the economy conditioning on the size of the 
exchange rate shocks, it is important that we have a large number of 
observations to be able to include as many episodes as possible of small 
as well as of large shocks.

We use an unbalanced panel of monthly data from the post–Bretton 
Woods period for about 70 countries in periods of moderate inflation. 
Our focus on moderate inflation countries is suggested by the theory: as 
inflation increases the impact effect Q(d) of a small nominal shock δ be-
comes larger, so that the difference between a small and a large shock 
becomes harder to detect.13 Since the data are monthly we cannot really 
estimate the impact effect Q(d), but we can measure the CPI change after 
the shock P(d, t) where t, the time elapsed, is one month.14 The monthly 
data provide yet another reason to focus on low inflation: while the 
frequency of price adjustment is unresponsive to inflation at low infla-
tion rates, the frequency increases as inflation enters the two- digit range 
(see the evidence in Gagnon [2009] and Alvarez et al. [2015]), so that the 
propagation of shocks is faster and its shape becomes harder to detect.

We compute an inflation forecast at different horizons conditional on 
an exchange rate innovation using a simple nonlinear regression.15 We 
measure the pass- through from exchange rate changes to inflation for 
t = 1, 3, 6, 12, and 24 months, allowing for the magnitude of the pass- 
through to depend on the size of the exchange rate shock. A key issue in 
estimation concerns the simultaneous interaction between inflation and 
the nominal exchange rate, which opens the possibility of reverse cau-
sation. We think reverse causation is especially likely for countries in a 
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fixed exchange rate regime, where large devaluations may occur as a 
“realignment” after periods of above average inflation. For this reason, 
we also control for the type of de facto exchange rate regime distinguish-
ing between flexible, managed, and fixed exchange rates (as classified 
by Levy- Yeyati and Sturzenegger [2003], Reinhart and Rogoff [2004], 
and the following update in Ilzetzki, Reinhart, and Rogoff 2008]). Also, 
the (near)  random- walk nature of exchange rates in  floating- exchange 
rate countries makes such a sample more appropriate to use our speci-
fication to test the hypothesis of the differential (in terms of size) impact 
effect of exchange rate shocks.

We test whether the  short- term pass- through, namely, the conditional 
correlation between the nominal exchange rate innovations and infla-
tion (at various horizons) is bigger for large exchange rate movements 
than for small ones. This is because the theory of SD models predicts a 
larger response of inflation to nominal shocks in the presence of large 
shocks, while TD models predict the shape of the impulse response 
function to be independent of the size of the shock. Various nonlinear 
functional forms were considered: a quadratic specification, and a cubic 
as well as a piecewise linear specification. In table 2 we report the esti-
mates of the quadratic specification: 

 pi,(t,t+h) = ai + dt + bhDei,t + gh(Dei,t)2sign(Dei,t) + ´it
p, (4)

where pi,(t,t+h) is the inflation rate of country i in the period from month 
t to month t + h (for h = 1, 3, 6, 12, 24), Dei,t is the devaluation from 
month t – 1 to month t.16 The sign operator is used to impose “symme-
try,” that is, that the inflation effect of a large devaluation equals the 
deflation effect of a large appreciation. All regressions use time and 
country dummies (fixed effects) and standard errors are computed us-
ing STATA’s robust standard error options (similar results obtain by 
clustering errors at the period or country level).

Our empirical results, summarized in table 2, uncover some evidence 
of a nonlinear effect, that is, of a statistically significant gh coefficient, in 
the sample that excludes countries in a fixed exchange rate regime.17 
The top panel of the table shows that the impulse response of inflation 
to large shock is above the response to a small shock up to the six- 
month horizon. After 24 months, the two impulse responses coincide, 
with a pass- through of about 10%. This is consistent with the hypothe-
sis that larger nominal shocks have a shorter half life. As mentioned in 
the introduction, in section V we discuss the dimensions in which this 
result is robust and the ones in which it is not (see tables 3–8).
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III. Setup for Model Economies

In this section, we describe the class of model economies for which we 
characterize the effect of a once- and- for- all monetary shock. Section 
III.A defines the economic environment within which firms operate. In 
sections III.B, III.C, and III.D, we define state dependent, time depen-
dent, and  mixed- type pricing rules, and describe the pricing problem of 
a firm under which each one of these rules optimally emerges. In these 
problems the firms take a constant interest rate as well the common part 
of their nominal marginal cost as given. In a sense, this is an “industry 
analysis” as, for instance, in Eichenbaum, Jaimovich, and Rebelo (2011). 
In appendix A we describe a setup where the results hold and can be 
interpreted as the general equilibrium response to a nominal shock in a 
closed economy model. Our main results, in section IV, characterize the 
propagation of the monetary shock under these different pricing rules.

A. Firms’ Price- Setting Problem

We first describe the static production function of the firms and then we 
define the price gaps, a concept we will use to characterize the firm’s 
decision rules.

Production

Each firm k produces and sells a quantity yki of n goods (each indexed 
by i), each with a linear  labor- only technology with productivity 1 / Z: 

yki(t) = ℓ ki(t)
Zki(t)

where Zki(t) = exp(sWki(t)),

where ℓ ki(t) its the labor input. Firm k is subject to a productivity shock 
that is common across all its products, Wk, as well as to idiosyncratic 
productivity shocks !Wki, independent across products. In particular, we 
assume the log of productivity follows a brownian motion Wki(t) with 
variance σ2, namely: 

 Wki(t) = s

s2 + s2
Wk(t) +

s

s2 + s2
!Wki(t), (5)

where the processes {Wk(t), !Wki(t)} are independent across k and i. In 
words, the process for {Wki} are independent across firms, have a com-
mon component with volatility s, and product specific volatility σ.
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Profit Function and Price Gaps

For all the model specifications that we consider we can define a “price 
gap,” gki, namely, the log difference between the current nominal price 
and the static  profit- maximizing price for good i sold by firm k. In par-
ticular, we let Pki(t) be the nominal price at time t and W(t)Zki(t) be the 
nominal marginal cost of production for good i and firm k, where W(t) 
is the nominal wage at time t. Each firm faces a demand with a constant 
elasticity η for the bundle of its n products, which has an elasticity of 
substitution ρ between each of its n varieties.18 We define the price gap 
gki(t) as the log of the difference between the current price and the static 
 profit- maximizing price: 

gki(t) = log Pki(t) − log(W(t)Zki(t)) − log(h / (h − 1))

= log Pki(t) − Wki(t) − logW(t) − log(h / (h − 1)),

where we omit the firm k subindex whenever it causes no misunder-
standing. Since we consider the case of constant inflation π, which in-
duces a constant drift in the nominal wage W(t), and productivity fol-
lows a brownian motion, the law of motion of the price gaps will also 
follow a brownian motion with drift equal to minus the inflation rate 
and possibly with correlation between products. Thus, absent a price 
adjustment, each price gap gki has continuous paths:

 dgki(t) = −pdt + sdWki(t). (6)

We let P(Pk1(t), ..., Pkn(t), Zk1(t), ..., Zkn(t),W(t); c(t)) denote the nominal 
profits of firm k, that is, its total nominal revenue minus production 
costs. We can approximate this profit function around the frictionless 
profit maximizing prices as:

 

P(Pk1(t), ..., Pkn(t), Zk1(t), ..., Zkn(t),W(t); c(t))

= W(t) r(h − 1)
2n i=1

n

∑gki2(t)
⎛

⎝
⎜

⎞

⎠
⎟ −

(r − h)(h − 1)
2n2

i=1

n

∑gki(t)
⎛

⎝
⎜

⎞

⎠
⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+ o(!(c(t), gk1(t),… , gkn(t))!2) + terms independent of gk(t),

 (7)

where o(x) a function of order smaller than x. This  second- order ap-
proximation is useful because it simplifies the objective function to be 
used in the dynamic problem. Notice that profits can be expressed as 
a function of price gaps. The variable c(t) stands for any variable that 
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enters in the profit function in a weakly separable way. For instance, 
in the general equilibrium model of section A, c(t) corresponds to the 
aggregate consumption. In that model c(t) is a shifter of the quantity 
demanded—due to its effect on the aggregate ideal price index—and 
also indirectly affects the present value of profits through its effect on 
the real rate. Nevertheless, up to a second order, we argue we can dis-
regard these effects. We make this approximation precise in section A.1.

B. State- Dependent Pricing Rules

We describe a  price- setting problem where the firm’s optimal decision 
rules are state dependent, that is, where price changes occur when the 
state, given by current profits or markups, attains a critical level. We as-
sume that firms have to pay a fixed menu cost to simultaneously adjust 
the price charge for the n products it produces.

State- Dependent and Ss Decision Rules

We let g = (g1, . . .  , gn) be the vector of the n price gaps for the firm, 
where we omit the firm index k for simplicity. A  state- dependent decision 
rule is described by an inaction set I ⊂ Rn and a value of the price gap 
g* ∈ I . Given these two elements, the optimal  state- dependent deci-
sion rule is inaction if g(t) ∈ I , and otherwise if g(t) ∉ I , then prices are 
changed so that the vector of price gaps right after the adjustment equal 
g(t) = g*. We note that if g* = 0, that is, if the n price gaps are set to zero, 
then it means that when prices are adjusted they are all set to a value 
that maximizes the static profits.

In general, the inaction set can be described by a function b : Rn → R:

 

(g1,… , gn) ∈ I → b(g1,… , gn) ≤ 0

and

(g1,… , gn) ∉ I → b(g1,… , gn) > 0.

 (8)

We will consider the case where the n products enter symmetrically, so 
that b is symmetric and the n elements of g* are identical. Symmetry 
provides a convenient mapping from the inaction set I  into an Ss rule 
given by two (scalar) threshold functions, one for the lower bound 
g : Rn−1 → R, and one for the upper bound g : Rn−1 → R. In an Ss 
rule prices are changed if, given the rest of the price gaps, the price gap 
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of any product (say product 1) reaches either a lower threshold g, or an 
upper threshold g, that is:

 (g1, g2,… , gn) ∈ I ⇔ g(g2,… , gn) ≤ g1 ≤ g(g2,… , gn). (9)

Summarizing, we can describe an Ss rule by the optimal return point g* 
and either a function b or the pair of functions (g, g).

Microfoundation of State- Dependent Model

We can microfound the  state- dependent rules described in equation (8) 
or equation (9) as the solution of the following problem. Consider a firm 
that chooses when to change prices, that is, the stopping times {ti} as 
well as the price changes DPj(ti) at those times to maximize:

 
{ti, DPj(ti), j=1,...,n, i=1,2,...,}

max E
0

∞

∫ e−rtP({P1(t), ..., Pn(t), Z1(t), ..., Zn(t)},W(t))

dt −
i=1

∞

∑e−rticmW(ti)

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 (10)

Pj(t) = Pj(ti) for all t ∈ (ti, ti+1] and DPj(ti) =
´↓0
limPj(ti + )́ − Pj(ti).

The two main parameters for this class of models are the size of the 
menu cost cm and the number of products n. The key assumption for 
the multiproduct specification (where n > 1) is that once the menu cost 
cm is paid, the firm can adjust the prices of all goods at no extra cost. We 
will provide an analytic characterization of this nonconcave stochastic 
sequence problem by solving an approximate version that uses the qua-
dratic profit function defined in equation (7) . Several models discussed 
in the recent literature are nested as special cases of the  state- dependent 
setup. We briefly recall some of them next.

Classic Menu Cost

The menu- cost problem, as in Golosov and Lucas (2007), is obtained 
setting n = 1. In this model the menu cost is constant at ψ, and with zero 
inflation the optimal policy is the well- known Ss rule: firms adjust their 
prices when the distance (in absolute value) between the actual price 
and the  profit- maximizing price gap reaches a value ±g . This model 
produces a size distribution of price changes that is degenerate: when 
the price adjustments occur and are of size ±g .
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Multiproduct Models

This model allows for n ≥ 2 and any value of π. Different values of n 
map into several models studied in the literature. For example, the case 
with n = 2 and normal innovations to productivity is studied in Mid-
rigan (2011), and the one with n  = 3 was studied in Bhattarai and 
Schoenle (2014). For large values of n (technically n → ∞, but in prac-
tice for n > 10) the model produces staggered pricing, where the time 
elapsed between two price adjustments is constant, as in Taylor (1980). 
Alvarez and Lippi (2014) show that with zero inflation π = 0, and with 
η = ρ (which implies that the elasticity of substitution between bundles 
is the same as the elasticity between varieties in a bundle), then the 
function b describing the optimal Ss rule can be written as:

 b(g1,… , gn) =
i=1

n

∑gi2 − y and gi* = 0 for all i = 1,… , n, (11)

for an optimally determined value of y . Equivalently, we can write b in 
terms of the optimal thresholds:

g(g2,… , gn) = − y −
i=2

n

∑gi2
⎛

⎝
⎜

⎞

⎠
⎟

1/2

and g(g2,… , gn) = y −
i=2

n

∑gi2
⎛

⎝
⎜

⎞

⎠
⎟

1/2

. (12)

The key economic insight of this model is that this framework generates 
small price changes, since the stopping times (for price adjustments) are 
defined by the sum of n price gaps, which implies that an individual 
price gap at the time of adjustment can take any value in (− y , y ).19

In the case where the elasticity of substitution h ≠ r, and/or there is 
 steady- state inflation, so p ≠ 0, and/or there is correlation between the 
idiosyncratic shocks to the products, so s > 0, we have that the func-
tion b that defines the set of inaction I  can be written as:

 b(g1,… , gn) =
i=1

n

∑gi2 − y
i=1

n

∑gi
⎛
⎝⎜

⎞
⎠⎟
 , (13)

where, with a slight abuse of notation, we use y  to denote a function 
y : R → R. In this more general case we can define two scalars 
y ≡ ∑ i=1

n gi2 and z ≡ ∑ i=1
n gi which we can use to define the inaction set. 

Moreover, one can show that the diffusions for (y, z) follow themselves 
a  first- order Markov process, that is, so they are sufficient to define the 
state of the problem.20
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C. Time- Dependent Pricing Rules

We now describe a  price- setting problem where the firm’s optimal deci-
sion rules are time dependent, that is, where the time between consecu-
tive price changes is statistically independent of the current markup 
or profits of the firm. Under such a rule the time elapsed since the last 
price change completely determines the hazard rate of price changes.

More formally, let an observation be an event in which the firm col-
lects and process all the information that is necessary for price setting. 
Absent other frictions, observation time will coincide with the times of 
a change of prices to adapt to the newly gathered information. Let ti be 
the date of the ith observation: at this time the firm uses all available 
information to adjust its price(s) and to decide the time of the next ob-
servation, ti+1. Formally, we allow for random dates in the sense that 
ti+1 − ti is a random variable with (right) cumulative distribution func-
tion H, that is, Pr{ti+1 − ti ≥ t|ti} = H(t|ti). The defining characteristic of 
a time- dependent model is that the realization of ti+1 is independent of 
the information relevant for price setting, that is, it is independent of 
the price gaps {g1(t),… , gn(t)} for t ≥ ti. Note that with this definition 
price changes cannot have any selection, where we use selection in the 
sense of Golosov and Lucas (2007).

A well- known example of TD models is Taylor’s (1980) model of stag-
gered price setting, where price adjustments are deterministically 
spaced every T periods, or H(t) = 1 for t < T, and H(t) = 0 otherwise. 
Another well- known example is the model by Mankiw and Reis (2002), 
where the times elapsed between successive observations are exponen-
tially distributed, or H(t) = e−lt so that the mean time elapsed between 
observations is 1 / l.21 More general versions of these models allow the 
distribution of times to follow a  first- order Markov process H(t; t0) where 
the distribution of times elapsed between observations t is allowed to 
depend on duration of the previous spell between observations t0.

Aggregating the behavior across firms, each described by the func-
tion H, provides a characterization of the stationary  cross- sectional dis-
tribution of the “times until the next observation”: Q(t). That is, the 
fraction of firms that, at any point in time, will wait at least t units of 
time until the next observation. We denote the right CDF of such dis-
tribution by Q(t), which determines the time it takes for an aggregate 
shock to be incorporated into the information set of a given fraction of 
firms, that is, the speed at which the monetary shock propagates into 
the aggregate price level.
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Microfoundation of Time- Dependent Pricing Rules

While the the distribution function H is assumed as a primitive of the 
analysis in several TD models, the literature following Caballero (1989) 
and Reis (2006) has provided an explicit  profit- maximization problem 
subject to information frictions to rationalize the origins of H. We de-
scribe a model with explicit microfoundations, based on Alvarez, Lippi, 
and Paciello (2016), that rationalizes inattentive behavior as the optimal 
policy given the cost of collecting and processing information. The firm 
 price- setting problem balances the costs and benefits of gathering infor-
mation. We assume that to gather information about the nominal mar-
ginal cost the firm must pay an “observation cost” along the lines dis-
cussed by Caballero (1989) and Reis (2006). In particular, we assume 
that by paying an observation cost co, firms learn the current value of 
the production cost (Z1, . . .  , Zn), which is the key variable to decide 
prices. We interpret the observation cost as the physical cost of acquir-
ing the information needed to make the price decision as well as costs 
associated with the decision making in the firm (gathering and aggre-
gating information; e.g., Zbaracki et al. [2004]; Reis [2006]). Alterna-
tively, these costs represent the cognitive costs associated with gather-
ing extra information, as found in experimental evidence on tracking 
problems (see Magnani, Gorry, and Oprea 2016).

The problem for the firm consists in deciding, at each observation 
date τi, the time until the new planned observation date Ti, as well the 
prices consistent with the available information:

 
{Ti,Pj(t), j=1,...,n, i=1,2,...,t≥0}

max E
0

∞

∫ e−r tP(P1(t), ..., Pn(t), Z1(t), ..., Zn(t),

W(t); c(t))dt −
i=1

∞

∑e−rtico(ti)W(ti)

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

, (14)

where ti+1 = min{si, Ti} + ti, where si is an exponential distributed r.v., 
and Ti and Pj(t) for t ∈ [ti, ti+1) only depend on information gathered at 
t0, t1,… , ti.

The value of the state of the firm is (Z1, . . . , Zn), which is the informa-
tion required to set the prices that maximize current profits. We assume 
that the state is only observed infrequently. In particular, we assume that 
there are two ways in which the firm can observe it. First, exogenously 
and at an exponentially distributed time with duration λ, the state be-
comes known to the firm. Second, the firm decides when it plans to ob-
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serve the state. Specifically, we assume that at the time of the ith observa-
tion (planned or not), denoted by τi the following events take place:  
(a) the observation cost co(ti) is realized, and (b) the firm obtains a signal 
z(ti) that is informative about the value of the next observation cost at 
different horizons. At this time, the firm decides the time elapsed Ti until 
then new planned observation, say Ti + ti. Thus the next observation oc-
curs either when the exogenous observation time, denoted by si arrives, 
or when the next planned observation occurs, that is, ti+1 = min{si, Ti} + ti. 
The decision of Ti depends only on the information available at time τi. 
This information consists on the observation costs, signals, and produc-
tion cost at the current and past observation dates t0, t1,… , ti. Further-
more, we assume that (c) production and observation cost and exoge-
nous observation times are all statistically independent, and that 
(d) nominal marginal cost for each product follows a martingale. Note 
that (d) implies that there are no incentives to change prices between 
observations, that is, there are no incentives for price plans.22 Assump-
tions (a)–(d) imply that the optimally chosen time between observations, 
or equivalently between price adjustments, is a function of the signal 
obtained at the beginning of the price spell, and that the size of price 
adjustment is independent of the time elapsed between price adjust-
ments, that is, these assumptions imply a time- dependent model.23

Our motivation for introducing the exogenous observation dates, 
that is, those triggered by si, is to nest the popular model of sticky infor-
mation where observations (and price changes) occur with a constant 
probability per unit of time λdt. On the other end, by setting λ = 0, we 
can abstract from this feature and all the observations involve a cost- 
benefit analysis in setting Ti. In general, in the determination of Ti, the 
value of λ has the same effect as a higher interest rate in the decision of 
the firm for Ti.

Our choice of the processes for the observation cost and signals is 
general enough to nest several cases studied in the literature.

Constant time between observations. If there are no exogenous ob-
servation times, that is, λ = 0, and observation cost co are constant, then 
the time between observation is constant. Caballero (1989) and Reis 
(2006) analyze this case. 

Calvo model. There are two setups for this model that give rise to the 
same distribution of price durations as in the Calvo model. The first 
one, as explained above, is obtained if all changes are exogenous, that 
is, when co is very large. The second obtains even if λ = 0, but there is 
particular distribution of co and signals so that the firm finds it optimal 
to observe at exponentially distributed times.24
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Markovian times. We refer to Markovian times the case where the 
times between observations (and price changes) form a  first- order 
Markov process, so times are random with the current time between 
observations depending statistically on the duration of the previous 
spell between observations. This is obtained in a very natural case 
where the current value of the observation cost is itself the signal for 
the next observation cost. This case is analyzed both in Reis (2006) (for 
negligibly small observation costs levels) and Alvarez, Lippi, and Pa-
ciello (2016). In particular, we assume that the observation cost follows 
a continuous time Markov chain, so that for each value uo there is a 
time- invariant probability per unit of time to transit to some other val-
ues. Thus, when a state is observed by the firm, the value of the obser-
vation cost serves as a signal of future observation costs at different 
horizons, directly implied by the Markov chain. The firm’s decision 
rule becomes a function T(uo), so that times between observations are 
random, each of them corresponding to a value of the realized observa-
tion cost uo. The economics of this choice balance the benefit of future 
observations with the expected cost at different horizons. The key 
property to understand the variability of the T is the forecastability of 
future observation costs, which is tightly related with the persistence of 
the Markov chain. Furthermore, the property of the Markov chain are 
important to construct the  cross- sectional distribution of times until 
the next adjustment Q(t), an object of interest for the impulse response 
of shocks.

D. State-  and Time- Dependent Models

We briefly review models that combine  state-  and time- dependent el-
ements. In these models, the decision rule of the firm depends both 
on the time elapsed since the last price change as well as on the state 
(e.g., whether markups have reached a critical level). We discuss two 
examples: the first one is a version of the  state- dependent model where 
at exogenously random dates the menu cost is set to zero. The second 
example is one where there are both observation and menu costs (in 
appendix D we write out both problems formally).

Multiproduct Calvo+ Model

The first example adds to the  state- dependent problem described above 
the arrival of free adjustment opportunities at a constant rate λ. Equiva-
lently, one can interpret the model as one with a random menu cost 
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that, in a period of length dt, equals cm with probability (1 − ldt), or 
equal zero with probability ldt. This random menu cost introduces ex-
ogenous adjustment times in a way that is similar to the one described 
for the exogenous observation times in time- dependent models. This 
model is referred to as the Calvo+ model, a combination with features of 
the Golosov and Lucas model as well as the Calvo model, and was first 
studied by Nakamura and Steinsson (2010). The multiproduct version 
of this model is studied in Alvarez, Le Bihan, and Lippi (2016).

The optimal policy for this case is a combination of  state-  and time- 
dependent policy. As in the  state- dependent case, prices change the 
first time the boundary of the inaction set is reached. But also, as in the 
time- dependent case, the price changes when a free adjustment op-
portunity arrives. Thus, the stopping time ti+1 is given by the first time 
(after the adjustment at ti) at which the state either reaches the bound-
ary of the inaction set or that an opportunity to adjust at zero cost 
occurs.

Positive Menu and Observation Costs

The second example combines both observation and menu costs.25 Ob-
servations will happen at discretely separated periods of times, and 
we denote the ith observation by the stopping time τi. Observations are 
subject to a constant fixed cost co > 0. Upon an observation the firm 
will decide whether to adjust prices or not, which we denote by the 
indicator a(ti) ∈ {0, 1}. If a price adjustment occurs, then a menu costs 
cm > 0 must be paid. The optimal decision rule combines features of 
the  state-  and time- dependent rules. Upon the current observation at 
time τi and with the relevant information gathered until that time (i.e., 
the value of the state) the firm decides the time until the next observa-
tion, Ti, so that the next observation occurs at ti+1 = ti + Ti . Also upon 
an observation at time τi, the firm decides whether to adjust prices or 
not, that is, whether a(ti) ∈ {1, 0}. Note that the pricing decision has a 
 state- dependent feature, in that upon an observation the firm will 
keep prices constant if the state is in the inaction set, and adjust them 
otherwise. But, differently from the menu- cost model described above, 
upon an observation the firm may find its state strictly outside of the 
inaction region, that is, it may strictly prefer to adjust. Versions of this 
model are analyzed in Alvarez et al. (2011), Alvarez, Lippi, and Paci-
ello (2016), Bonomo, Carvalho, and Garcia (2010), and Bonomo  
et al. (2016).
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E. Steady- State Price- Setting Statistics

For future reference, we introduce three  steady- state statistics that sum-
marize  price- setting behavior and we consider a steady state with idio-
syncratic shocks, no aggregate shocks, and trend inflation π. Define 
N(Dpi; p) as the average number of price changes per unit of time (say 
per year); Var(Dpi; p) as the standard deviation of the distribution of the 
size of (nonzero) price changes and as the Kurt(Dpi; p) the kurtosis of the 
distribution of the size of (nonzero) price changes. It will be useful to 
index each of these statistics with the  steady- state inflation rate π. No-
tice that, in principle, these statistics are directly measurable in micro-
data sets. We focus on these statistics because for the three classes of 
models described above, the ratio Kurt(Dpi; p) / N(Dpi; p) provides a 
sufficient summary of statistics for the real effects of a small monetary 
shock. This is the object of the next section. In appendix E we show that 
there is an identity between N(Dpi) and Std(Dpi) for small inflation rate, 
uncovering the  trade- off that any decision rule around zero inflation 
faces.

IV. The Propagation of Monetary Shocks

In this section, we characterize the effect on the aggregate price level 
and on output of a monetary shock. Up to now, we focused on the firm 
pricing problems under different frictions and defined  steady- state sta-
tistics. Turns out that, under a convenient GE structure that has been 
widely adopted in the literature (see, e.g., Caballero and Engel 1993; 
Golosov and Lucas 2007; Alvarez and Lippi 2014), the effect on prices 
and output of monetary shocks can be characterized by the impact of 
the monetary shocks on price gaps, ignoring GE effects. We start by 
reviewing these results. Aided with this structure, we then turn to 
prove the main results in the paper. First, we show in Proposition 1 that 
the impact effect on prices of a small monetary shock is second order 
in  state- dependent and time- dependent models. Second, we show in 
Proposition 2 that the effect of a small monetary shock on output can be 
summarized by the kurtosis both in time-  and  state- dependent models. 
Finally, we show in Proposition 3 that impact effect on prices of large 
monetary shocks is first order in  state- dependent models and zero in 
time- dependent models.26

Preliminaries. The GE structure that is developed in appendix A fol-
lows Golosov and Lucas (2007) and, in particular, Alvarez and Lippi 
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(2014). In this structure, what will determine the propagation of shocks 
up to first order will be price gaps; GE effects can be ignored by the 
firm, greatly simplifying the analysis. There are three reasons for this. 
First, it can be shown that after a monetary shock of size δ:

 R(t) = r + p, log W(t)
W(t)

= d for all t ≥ 0, (15)

where R(t) is the real interest rate, W(t) is the wage rate in steady state 
before the shock, and W(t) is the wage rate after the shock. Thus, the 
real interest rate is unchanged by the shock and wages respond on im-
pact. Furthermore, deviations of prices from steady state relate one- to- 
one to deviations on output according to:

 log c(t)
c

= 1
´

d − log P(t)
P(t)

⎛
⎝⎜

⎞
⎠⎟

, (16)

where c  is the constant flexible price equilibrium output and where P(t) 
is the ideal price index at time t ≥ 0 and P(t) is the path of the price level 
in the steady state before the shock, with P(t) = eptP for all t ≥ 0. Sec-
ond, as shown in Alvarez and Lippi (2014), the price level after a mon-
etary shock can be approximated as a function of the price gaps. In 
particular, it can be shown that:

 

log P(t)
P(t)

= d +
0

1
∫ 1

n i=1

n

∑(gki(t) − !gki)
⎛

⎝
⎜

⎞

⎠
⎟ dk

+
0

1
∫

i=1

n

∑o(||pki(t) − !pki(t)||)
⎛

⎝
⎜

⎞

⎠
⎟ dk,

 (17)

where !gki are the price gaps in the steady state before the shock and o(x) 
denotes a function of order smaller than x.27 Therefore, to understand 
the impact effect on prices of a monetary shock, it is sufficient to under-
stand the effect of the monetary shock on price gaps. In addition, as we 
discussed in section III, in an approximation to the firms pricing prob-
lem we can ignore general equilibrium effects and focus only on price 
gaps. Third, it helps to reinterpret a simple cost shock, the one we will 
focus on, as the general equilibrium response of a closed economy to a 
once- and- for- all shock to the money supply. We start with a preshock 
path of wages W(t) = Wept for t ≥ 0 and a preshock  steady- state equi-
librium aggregate price level P(t) = Pept. Following the shock at time 
t = 0, under the simplifying assumptions discussed in appendix A, it 
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can be shown that W(t) = ed W(t) all t ≥ 0. So, a monetary shock will 
imply raising wages on impact. This will imply a change in the price 
gaps and a reaction for some firms that will up to first order ignore 
 general- equilbrium effects. The effect over price gaps will be aggre-
gated into the price level up to first order. Finally, the deviations of the 
price level from the  steady- state level will then imply deviation in out-
put from its  steady- state level.

Impulse Responses: Definitions and Some Properties. Regarding 
prices, the impulse response of prices can be defined as

 P(d, t; p) = Q(d; p) +
0

t

∫ u(d, s; p)ds. (18)

The impulse response is made of two parts: an instantaneous impact 
adjustment (a jump) of the aggregate price level, which occurs at the 
time of the shock, denoted by Q(d; p), and a continuous flow of adjust-
ments from t > 0 on, denoted by u(d, t). In the next subsection we will 
study Q(d). This statistic was first used by Caballero and Engel (1993, 
2007), to summarize the degree of flexibility of an economy. We note a 
few properties of the impulse response of prices: (a) the impact effect is 
bounded by δ, (b) in the long term the shock is completely pass- through 
to prices, and (c) in the flexible price case prices jump on impact:

0 ≤ P(0, d; p) ≡ Q(d; p) ≤ d,
t→∞
limP(t, d; p) = d, andP flex(t, d; p) = d,

where we use the  super- index flex for the flexible price case. Regard-
ing output, in our GE version, output and prices are tightly negatively 
related after the shock, so we can easily compute the output effect. The 
negative relationship comes from the assumption that agents are on 
their labor supply schedule, and that nominal wages jump on impact. 
Thus the effect on output mirrors the one on real wages. This logic 
gives:

 Y(d, t; p) = 1
´

[d − P(d, t; p)], (19)

where 1 / ε is a parameter describing the uncompensated labor supply 
elasticity, as described in appendix A. We define, as a summary mea-
sure of the impulse response, its cumulative version, that is, the area 
under equation (19)

 M(d; p) =
0

∞

∫ Y(d, t; p)dt. (20)
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For the cumulative effect of output we also have

0 ≤ Y(0, d; p) ≡ 1
´

[d − Q(d; p)] ≤ d

´
,
t→∞
limY(t, d; p) = 0 for all d

Y flex(t, d; p) = 0 for all t ≥ 0 and thus M flex(d; p) = 0 for all d.

A. Small Shocks: SD and TD Models Are Identical on Impact

We now show that the impact effect of a monetary shock on prices is 
second order. This holds for all the models considered here, that is, 
those models with a general equilibrium set up as described in section 
A and with  state- dependent decision rules as described in section III.B, 
and/or time- dependent decisions rules as described in section III.C, 
and/or those with features of both as described in section III.D.

We start by discussing the intuition of the impact effect of a monetary 
shock. Notice that equation (17) implies that the impact effect of a mon-
etary shock is given by

 Q(d; p) = d +
0

1

∫ 1
n i=1

n

∑[gki(0) − !gki]
⎛
⎝⎜

⎞
⎠⎟
dk , (21)

where !gki are the price gaps just before the monetary shock. Right after 
the monetary shocks price gaps will change to gki(0). This change has 
two parts. First, mechanically, the log nominal wage increases by δ, so 
that every single price gap decreases by δ. Notice that this mechanical 
effect cancels with the first term δ on equation (18). Second, as a conse-
quence of the changes in wages some firms may decide to adjust their 
prices right after the shock occurs (depending on the type of model), so 
that for those products and firms there is an extra change in the price 
gap gki(0). To see this, notice that the price gap of firm k product i right 
after the shock can be decomposed as the price gap preshock !gki minus 
the common increase in wages δ plus the increase in prices 
log Pki(0) − log !Pki(0)

 gki(0) = !gki − d + (log Pki(0) − log !Pki(0)). (22)

The first two terms are mechanical, and the third is the only one that de-
pends on what the firms do. We introduce price gaps, instead of work-
ing directly with the price increases, due to two reasons. One is that in 
 state- dependent models price gaps are the state, hence, it facilitates to 
understand what will happen. Second, in all models the contribution of 
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a firm k product i to the output deviation from steady state can be writ-
ten in terms of the price gap. The statement of the Proposition follows:

Proposition 1. Let Q(d; p), defined in equation (18), be the impact effect on 
the price level of a once- and- for- all monetary shock of size δ for an economy 
starting at  steady- state inflation π. Fix the inflation rate π. If the decision 
rules are state dependent as in equation (9), and s > 0, then:

 Q(d; p) = ′Q (0; p)d+ o(d) with ′Q (0; p) ≡ ∂
∂d

Q(d; p)
d=0

= 0, (23)

where o(d) means of order smaller than δ. If the decision rules are time depen-
dent as in equation (14), then:

 Q(d; p) = 0 for all d and for all p. (24)

The proposition states that there is no  first- order effect of a small 
monetary shock in either a SD and as well as in a TD model. The result 
is stronger for time- dependent models in the sense that the impact ef-
fect is zero for any size of the monetary shock. We give a brief intuitive 
explanation of the result. Note that for both time-  and  state- dependent 
models, the aggregate shock increases wages by δ log points, and thus 
decreases every price gap. Firms in time-  and  state- dependent models 
react differently. In both cases, the firms that change their prices on im-
pact will change, on average, by a discrete amount proportional to δ. 
Nevertheless, in both cases we will conclude that the fraction of firms 
that adjust on impact, denoted by I(δ) is of order smaller than δ, that is, 
we argue that ′I (0) = 0. The argument why ′I (0) = 0 is different for 
time-  than for  state- =dependent models.

In the case of  state- dependent models described in section III.B, the 
reason why ′I (0) = 0 is that the firm’s decision to change prices de-
pends on whether the state after the shock is outside the set of inaction 
I . For instance, in the one product case n = 1, prices are adjusted when 
the price gap reaches either boundary of the range of inaction given by 
an interval [g, g]. A key argument in these models is that in steady state, 
right before the shock occurred, there is a zero density at the boundaries 
of the range of inaction. Then the fraction of firms that adjust is propor-
tional to δ, for small δ. In particular, denoting by f the  steady- state den-
sity of the price gaps, the fraction that adjusts equals I(δ) = ∫ g

g+df(g)dg = 
f(g)δ + o(δ). The fact that in steady state there is zero density around the 
boundary, that is, that f (g) = f (g) = 0, is a general feature of the 
 state- dependent Ss decision rules with idiosyncratic shocks (σ > 0), and 
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it is so because at the boundary of the range of inaction firms exit (i.e., 
prices are adjusted) when they get an idiosyncratic shock that will push 
them outside. Interestingly, this argument extends to multiproduct 
n ≥ 1, with correlated shocks across products, and inaction sets given 
implicitly by ranges equation (9).

In the case of time- dependent models described in section III.C, the 
reason why ′I (0) = 0 is that the firm’s decision rules depend on the time 
elapsed since the last adjustment. Hence, even if the price gap changes, 
the firm will not be aware of it until the next review time (decided in the 
past) comes due. Finally, since the model is set in continuous time, on 
impact there is a negligible fraction of firms adjusting, that is, the num-
ber that adjusts in an interval of length dt equals (1 / N(Dpi; p))dt. 
Hence, as dt → 0, the fraction of firms that change prices to go zero and 
I(d) → 0 for any δ! Note that we are assuming that the information 
about the change in the price gap due to change on wages is not ob-
served until the time at which firms have previously scheduled their 
decision to learn the state, which is the key assumption of time- 
dependent models based on inattentiveness. The argument for models 
with both time-  and  state- dependent features, as in section III.D, is 
more complicated, but unsurprisingly the results still holds.

The Logic of the General Proof

The next paragraphs illustrate the logic of the proof of Proposition 1 for 
SD models in the general case with many goods and allows for corre-
lated shocks across goods. The proof has two parts. The first part shows 
that the  steady- state density f of price gaps g evaluated at the boundary 
of the inaction set is zero. We write this as Lemma 1 and include its 
proof in appendix B.

Lemma 1. Assume s > 0 for a SD model. Then, there is zero density at an 
exit point, that is, if b(g) = 0, then f(g) = 0.

The logic of the result in Lemma 1 is easier to see in the one dimen-
sional case (n = 1), which we present separately. The idea behind this 
result is that the boundary of the inaction set is an exit point, that is, if a 
firm price gap hits the boundary it will change the price, discretely 
changing the price gap. This behavior, where the  steady- state mass “es-
capes” with nonnegligible probability to discretely far away regions of 
the state space implies that the  steady- state density has to be zero (this 
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is in contrast with the behavior everywhere else where the mass moves 
only to  closed- by states). Specifically, consider a discrete state discrete 
space. We let the time periods be of length ∆ and a state space for the 
price gap be of size Ds. The price gap g(t + D) − g(t) = Ds with 
probability (1/ 2)[1 − p D / s] and down to − Ds with the comple-
mentary probability. Thus the expected change and expected square 
change of g per period are –π∆ and sD, respectively. The range of inac-
tion is given by an interval [g, g]. We write the analog to the Kolmogorov 
forward equation in discrete time for the probability of each value g in 
the state space as for any g ≠ g*:

 f (g; D) =

f (g − Ds; D) 1
2

1 − p D

s

⎡

⎣
⎢

⎤

⎦
⎥ for g ≤ g

f (g − Ds; D) 1
2

1 − p D

s

⎡

⎣
⎢

⎤

⎦
⎥

+ f (g + Ds; D) 1
2

1 + p D

s

⎡

⎣
⎢

⎤

⎦
⎥

for g ≤ g ≤ g

f (g + Ds; D) 1
2

1 + p D

s

⎡

⎣
⎢

⎤

⎦
⎥ for g ≥ g.

⎧

⎨

⎪
⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪

 (25)

At the upper bound we have: 

f (g) =
D↓

lim f (g; D) =
D↓

lim f (g − Ds; D)
D↓

lim
1
2

1 − p D

s

⎡
⎣⎢

⎤
⎦⎥

= f (g) 1
2

, (26)

where we use that, provided that σ > 0, the density f (⋅) is continuous in 
the closure of the range on inaction in the first and last equalities. We 
obtain that the only possible solution of f (g) = f (g) / 2 is f (g) = 0. An 
analogous argument shows that f (g) = 0.

The second part shows that the impact effect on aggregate prices is of 
second order with respect to δ. In the general case, we define the frac-
tion of firms (or  price- gap vectors) that adjust prices in impact as I(δ) as

 I(d) =
−∞

∞

∫ !
−∞

∞

∫ f (g1, g2,… , gn)1{b(g1−d,g2−d,…,gn−d)>0}dgn!⎡
⎣

⎤
⎦ dg1, (27)

where we use that f(g) = 0 if b(g) < 0. Thus I(δ) integrates using the den-
sity f the firms whose price gaps will be outside the set of inaction, that 
is, b(g1 − d, g2 − d,… , gn − d) > 0, after the aggregate shock δ. We set 
the second part as Lemma 2.
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Lemma 2. Assume that there is no density on the boundary of the inaction 
set. Then, there is no  first- order impact effect on prices, that is, ′I (0) = 0. 

In the one dimensional case, Lemma 2 follows from direct computa-
tion of I and of its derivative, as shown in the text. The main idea is that 
the firms that change prices on impact for a small aggregate shock δ are 
those close to the lower boundary of the inaction set, since price gaps 
decrease all by δ. Thus if the density of price gaps are zero at the lower 
boundary, there is no  first- order effect on the fraction of firms adjusting. 
The n- dimensional case is more involved, in this case the price gap for 
each firm is a vector for which each of its components decreases by δ 
with the shock. In the n > 1 case we also had to take into account a gen-
eral (unknown) shape of the n- dimensional set of inaction and the cor-
relation among the price gap from different products of the firm. In 
particular, in the n > 1 case there is no simple lower bound for the range 
on inaction as is in the one dimensional case. We prove Lemma 2 by 
finding a function I (d), which is a suitable upper bound for I(d). The 
 upper- bound function I (d), which is inspired by the one dimensional, 
also has zero derivative when evaluated at δ = 0. While technically the 
proof is more involved, the logic is the same as in the one dimensional 
case: for a small aggregate shock δ the firm that will change its price in 
impact has to belong to the boundary of the set of inaction.

How the Impact Effect Varies with Inflation

We conclude the analysis of the impact effect with a discussion of the 
role of inflation, π, relative to the volatility of the idiosyncratic shocks 
σ. Let us focus on a positive monetary shock δ > 0 in the reminder of 
this paragraph. This shock increases the desired price of all firms by an 
amount δ. First, we note that the impact effect is independent of the 
inflation rate in TD models just because, by assumption, decision rules 
do not depend on the state. But inflation does change the impact effect 
in SD models. In particular, while for finite values of the ratio p / s the 
impact effect Θ is of order d2, as stated in equation (24) , we notice that 
the impact effect is increasing with π and that the effect becomes first 
order as p / s → ∞. This is the case, for instance, in the classic menu- 
cost models of Sheshinski and Weiss (1983) and Caplin and Spulber 
(1987): in both models the impact effect Θ(δ) is of order δ, since in these 
models σ = 0 and π > 0, so that the ratio diverges. Thus, since the impact 
effect is second order but it is increasing in π, in the empirical analysis 
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we will focus on low- inflation countries where the lack of response to 
small shocks should be easier to detect.

We briefly expand on the reason why in the case of n = 1, as p / s 
increases, the impact effect of an aggregate monetary shock increases. 
As explained above, the  first- order term on Θ(δ, π) is given by the in-
variant density f (g, p). A straightforward analysis of the Kolmogorov 
forward equation solved by f shows that as inflation rises relative to the 
variance of the idiosyncratic shock s2, the shape of f (⋅, p) changes in the 
segment [g, g*] as follows. The density f is linear in g for π = 0, and it 
becomes concave in g for π > 0, with curvature − ′′f (g, p) / ′f (g, p) = 
2π / σ2. In the limit as p / s2 → ∞ the density f (g) is strictly positive, 
and f (⋅) is constant, so that there is a  first- order effect. Note that this is 
the case in the classical analysis of Sheshinski and Weiss (1983) and 
Caplin and Spulber (1987), because there are no idiosyncraric shocks 
σ = 0. The reason why the invariant distribution “piles up” more den-
sity around g as inflation rises is straightforward: the price gaps drift to 
g at speed π, and they only go up when they are hit by a positive idio-
syncratic shock (with variance σ2).

In appendix F we formally analyze how the impact effect varies with 
inflation around small inflation rates. For simplicity we focus on a 
model with one good n = 1 and assume the adjustment thresholds g, g  
and optimal return point g* are fixed at the level corresponding to zero 
inflation.28 Since f (g; p) = 0, expanding the first nonzero term of the 
impact effect Θ as a function of the inflation rate we can obtain that:

Q(d; p) = 1
2

′f (g; p)d2 + o(d) ≈ 1
2

[ ′f (g; 0) + ′fp(g; 0)p]d2

= 1
2

1
g2

+ 1
s2g

p
⎡
⎣⎢

⎤
⎦⎥

d2

= 1
Std Dpi[ ]

2
Std Dpi[ ] + p

s2

⎡
⎣⎢

⎤
⎦⎥

d2.

The approximation shows that the impact effect is increasing in the ra-
tio p / s2, since around zero inflation the  steady- state standard devia-
tion of price changes is given by Std[Δpi] = 2g.

Finally, we note that in both TD and SD models a higher inflation rate 
tends to increase the average number of price adjustments per unit of 
time N(Dpi; p), even though the elasticity of the frequency of price ad-
justment to the inflation rate is zero at π = 0 in models with σ > 0 (see 
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Alvarez et al. [2011] and Alvarez, Le Bihan, and Lippi [2016] for formal 
proofs). This implies that for small rates of inflation (or deflation) the 
frequency of price adjustments is very close to the frequency that occurs 
at zero inflation (see Alvarez and Lippi [2014] for a formal proof). In 
practice, this theoretical prediction is consistent with evidence on the 
small elasticity of the frequency of price changes in Gagnon (2009) and 
Alvarez et al. (2015), who show that the frequency is basically insensi-
tive to inflation for rates between 5 and 10% (in absolute value).

B. Small Shocks: SD and TD Have Identical Cumulated Propagation

The next result uses a simple GE model to characterize the cumulative 
output effect, M(d, p), of a shock δ. We focus on the cumulative output 
effects, namely, the area under the output impulse response function to 
a monetary shock because it is a measure of the real effects of monetary 
policy that naturally combines the duration of the output response with 
the depth of the response. We show that this effect is well approximated 
by the ratio of two  steady- state statistics: N(Dpi; p), the average number 
of price adjustments per unit of time, and Kurt(Dpi; p), the kurtosis of 
the size distribution of (nonzero) price changes. These two statistics, in 
turn, depend on all the structural parameters of a particular model. But 
once the models for which the proposition applies are matched with 
these two statistics, then these models will have the same cumulative 
effect after a small monetary shock.

Proposition 2. Let M(d; p), defined in equation (20), be the cumulative im-
pulse response of output to a once- and- for- all monetary shock of size δ for an 
economy starting at  steady- state inflation π. Then

 M(d; p) = Kurt(Dpi; 0)
´6N(Dpi; 0)

d + o(! (d, p) !2), (28)

where o(x) means of order smaller than x. Moreover, 

 ∂
∂p

Kurt(Dpi; p)
N(Dpi; p)

⎛
⎝⎜

⎞
⎠⎟

p=0

= 0. (29)

The explanation of why this result holds is involved, but its interpreta-
tion is not. The ratio in equation (28) controls for both the selection ef-
fect, as measured by Kurt(Dpi; p), and for the degree of flexibility of the 
economy, as measured by N(Dpi; p). On the one hand, that the cumula-
tive impulse response depends on the degree of flexibility is hardly sur-
prising. On the other hand, that the selection effect is captured com-
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pletely by the  steady- state kurtosis of prices is, at least to us, more 
surprising. The role of kurtosis is more novel and embodies the extent 
to which “selection” in the size as well as in the timing of price changes 
occurs.29 The selection effect, a terminology introduced by Golosov and 
Lucas (2007), indicates that firms that change prices after the monetary 
shock are the firms whose prices are in greatest need of adjustment, a 
hallmark of SD models. Selection gives rise to large price adjustments 
after the shock, so that the CPI response is fast.30 Such selection is absent 
in TD models where the adjusting firms are chosen based on (possibly 
stochastic functions of) calendar time, not based on their state. In addi-
tion to selection in the size of price changes, recent contributions have 
highlighted a related selection effect in TD models that relates to the 
timing of price changes.31 Surprisingly, the kurtosis of the  steady- state 
distribution of the size of price changes also encodes this type of selec-
tion, which is central to TD models. For instance, in the models of Tay-
lor and Calvo, calibrated to the same mean frequency of price changes 
N(Δpi), the size of the average price change across adjusting firms is con-
stant (after a monetary shock), so there is no selection concerning the 
size. Yet the real cumulative output effect in Calvo is twice the effect in 
Taylor. This happens because in Taylor the time elapsed between ad-
justments is a constant T = 1 / N(Δpi), while in Calvo it has an expo-
nential distribution (with mean T), with a thick right tail of firms that 
adjust very late.32 This paper collects and extends previous results by 
showing that equation (28) also holds for models with both TD and SD 
components. Formally, the result is shown for SD models in Alvarez, Le 
Bihan, and Lippi (2016) and the result for TD models in Alvarez, Lippi, 
and Paciello (2016) for the case of n = 1 products.33 For the multiproduct 
version of the Calvo+ model, which showcases features of both SD and 
TD models, the result is also shown in Alvarez, Le Bihan, and Lippi 
(2016).34 In particular, appendix G provides numerical evidence that the 
result also holds in models that combine those frictions. Also, in that 
appendix this result is illustrated by aggregating and computing the 
impulse response of a decisions rules for a  price- setting problem with 
both a menu cost as well as an observation cost, based on Alvarez, 
Lippi, and Paciello (2011, 2015, 2016).35

Extending the Expression for the Area under the  
Impulse Response for TD Models to n Products

Here we argue that Propositions 1 and 2 in Alvarez, Lippi, and Paciello 
(2016) hold with no changes for the n > 1 case, which establishes Propo-
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sition 2 for the TD case. Consider the TD model in its multiproduct ver-
sion. Alvarez, Lippi, and Paciello (2016) show that equation (28) holds 
for that model with n = 1 . This result extends in a straightforward way 
to the multiproduct case of n > 1. To see why, let τ be the time elapsed 
between observations, noticing that since the menu cost is zero, τ, it 
is also the time between price changes. Recall that when an observa-
tion occurs every single product of the firm change its price, “closing” 
its gaps (this, instead, extends from the one to the n products, since it 
only requires the symmetry or exchangeability and the lack of drift). 
Thus the state of the economy is still the distribution of times until the 
next review, the same as the one dimensional object in Alvarez, Lippi, 
and Paciello (2016) denoted by Q(t) with density q(t). At the time of the 
adjustment (or of the observation) we can then consider each of the n 
products of the firms in isolation. This is because the marginal distribu-
tion of the price gaps of each of the n products is the same, and hence 
the result is identical. Note that this result holds even if the price gaps 
have an arbitrary correlation between the products of the same firm.  
It only requires that the marginal distribution of each price gaps be  
normal.

The expression in equation (28) can be regarded as a  second- order ap-
proximation to M(d; p). This expression means that

 0 = ∂M(0, 0)
∂p

= ∂2M(0, 0)
∂d2

= ∂2M(0, 0)
∂p2

= ∂2M(0, 0)
∂d ∂p

, (30)

that is, the approximation in equation (28) holds up to second order, 
and thus it is very accurate for small values of δ and π. There are two 
different arguments for why these derivatives are zero. First, relative to 
π, note that by definition M(0, p) = 0 for all π, since when there is no 
shock there is no response. Thus, all derivatives with respect to π are 
zero at δ = 0. The reason why the second derivatives, especially the one 
with respect to δ, are zero is due to the symmetry of the M function. In 
particular, M(d; p) = −M(−d; −p). This means that the effect of prices 
and output when there is a negative shock in an economy with defla-
tion is the same (in absolute) value than an economy with inflation and 
a positive shock. Thus taking any second derivative of this function, 
and evaluating at (d, p) = (0, 0), we obtain the desired result. Thus, the 
key is to argue the symmetry of this function. This in turn depends, 
among other things, on the use of the  second- order approximation of 
the profit function, as developed in equation (41), to argue for the sym-
metry of the optimal decision rules. Finally we explain the significance 
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of the fact that the approximation itself has zero derivative with respect 
to inflation, that is, the importance of equation (29). This means that the 
expression for M(d; p) is accurate for economies with low inflation 
rates.

In principle, microdata on prices can be used to construct empirical 
measures of kurtosis. In constructing such measures, care must be taken 
of small measurement errors (lots of small price changes are just noise) 
and heterogeneity (pooling together goods with different volatility of 
price changes), which may mechanically contribute to generating a high 
value of kurtosis, as stressed in Cavallo and Rigobon (2016). Section 2 
of Alvarez, Le Bihan, and Lippi (2016) uses such statistical procedures 
and estimated kurtosis values in the neighborhood of 4. This is useful 
to decide “where the data stand” between a  Golosov- Lucas model (with 
kurtosis 1) versus a Calvo model (with kurtosis 6).

Three Examples

To illustrate the point that models with different degrees of time and 
state dependence can generate the same cumulative output response 
after a permanent shock, we describe three setups that give the same 
value of M for small δ in spite of their different nature and  steady- state 
behavior in other dimensions than those involved by the formula in 
equation (28). We concentrate on describing Kurt(Dpi; 0), since in all 
these models it is easy to change other parameters, such as the fixed 
adjustment or observation cost, to produce the same value of N(Dpi; 0). 
We focus on three examples where Kurt(Dpi) = 3. The first example is a 
 state- dependent model with many products, that is, with n → ∞. This 
model produces a size distribution of price changes that is normal (see 
Alvarez and Lippi [2014] for a proof), so that the kurtosis equals 3. The 
second example is a pure time- dependent model, with constant obser-
vation cost co > 0 (and zero menu cost cm = 0). This model is analyzed 
by, for example, Reis (2006), and like the previous model it also pro-
duces a size distribution of price changes that is normal, so its kurtosis 
equals to 3. While the first two models have identical  steady- state sta-
tistics in terms of distribution of adjustment times and the size distribu-
tion of price changes, the third one is different. The third example is the 
so- called Calvo- plus model of Nakamura and Steinsson (2010). In this 
model n = 1 and while some prices occur upon the arrival of a free ad-
justment opportunities, other are decided by the firm after paying the 
menu cost. Alvarez, Le Bihan, and Lippi (2016) show that if the fraction 
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of price adjustment due to free adjustment opportunities is 90%, then 
the model produces a kurtosis of the size of price changes that is equal 
to 3 (although the distribution function of the size of price changes is 
not normal). Notice that these three models are set up to have the same 
mean duration between price adjustments, but other moments of the 
distribution of adjustment times will differ. Moreover, the models also 
differ in terms of the nature of the friction (menu cost versus observa-
tion). In spite of these differences, Proposition 2 states that the cumula-
tive output effect of a small monetary shock is identical in these models.

C. Large Shocks: State and Time- Dependent Models Differ

In this section we examine the impact effect on prices of large shocks. 
The result differs between time-  and  state- dependent models. For time- 
dependent models, the size of the monetary shock δ is immaterial. In-
stead, for  state- dependent models, large shocks behave differently than 
small shocks.

Proposition 3. Consider the impact effect of a once- and- for- all change in 
money of size δ for an economy at steady state with inflation rate π. Then in a 
time- dependent model as in section III.C we have:

 Q(d; p) = 0 for all d ≥ 0, (31)

while in a  state- dependent model, as in section III.B, with η = ρ and no correlation 
between the idiosyncratic shocks across the products of the firm (s > 0) we have:

 ∂Q(d; 0)
∂d

≥ 0 with Q(d; 0)
d

→ 1 as d → 2Std(Dpi; 0), (32)

and in the general  state- dependent decision rules as in equation (9) with σ > 0, 
for each π there is a δ(π) such that:

 Q(d; p) = d for all d ≥ d(p). (33)

The explanation why the effect of monetary shocks in time- dependent 
models is independent of the size of the monetary shock δ, is familiar 
from the Calvo model, and it is the exactly the same as the one given for 
small shocks. The fact that for  state- dependent models the impact effect 
is different for large versus small shocks is the hallmark of fixed cost- 
adjustment models. Put simply, when the shock is large enough, a large 
fraction of firms will pay the fixed cost and adjust. Interestingly, equa-
tion (32) gives a hint of when a shock is large enough so that all the 
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firms will adjust immediately, namely when the shock δ is larger than 
the  steady- state standard deviation of price changes. This result can be 
easily seen in the case of n = 1 product, since the standard deviation of 
price changes Std(Dpi) = g, since price changes are ±g  with the same 
probability. Recall that in this case the distribution of price gaps in the 
steady state right before the shock lies in the interval [−g, g]. Thus, when 
the shock is large enough so that d > 2g , then every single firm will 
find that right after the shock has its price gap outside the range of inac-
tion. A similar reasoning holds for any number of products, that is, for 
n ≥ 1. The proof of the result in equation (32) and a characterization of 
this function are developed in Proposition 8(iii) and Proposition 10 of 
Alvarez and Lippi (2014).

In the general case, fixing all the parameters that define the set of in-
action, one can find a value of δ that is large enough so that every price 
gap vector after the aggregate shock is outside the set of inaction, that 
is, (g1 − d, g2 − d,… , gn − d) ∉ I . This only requires that the set of inac-
tion I ⊂ Rn is bounded. Thus, one can take δ(π) to be the difference 
between the largest and smallest values in I .36 Alvarez, Le Bihan, and 
Lippi (2016) characterize d(0), the smallest value of the aggregate shock 
δ for which all firms adjust their prices on impact for a multiproduct 
Calvo+ model. In this case, for each value of n ≥ 1 the threshold d(0) is 
a function of ℓ ∈ [0, 1], the fraction of all price changes that occur due 
to the Calvo parameters. As ℓ increases, the value of d(0) also increases, 
and indeed as ℓ → 1 then d → ∞. This is quite intuitive: as the impor-
tance of the time dependence of the decision rules increase (i.e., as ℓ 
increases), then threshold for the aggregate shock d increases.

V. Some Exploratory Evidence

In this section we exploit the predictions of Propositions 1 and 3 to 
explore the nature of the friction that underlies a sticky response to 
shocks. As discussed above, on the one hand theory predicts that with 
time dependent rules the impact effect is independent of the size of the 
shock. On the other hand, with state dependent rules theory predicts 
that the impact effect is second order for small shocks and first order for 
large shocks. Thus, if the impact of a cost shock on prices depends on 
the size of the shock, the evidence will point towards state dependence. 
In the empirical exploration, in particular, we study whether changes 
on the exchange rate of different sizes imply a differential effect for in-
flation at different horizons after the shock. We focus on low inflation 

This content downloaded from 128.135.003.116 on January 19, 2018 13:13:46 PM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



416 Alvarez, Lippi, and Passadore

countries since the approximation of Propositions 1 and 3 is accurate, 
as discussed in Section 4, for low levels of inflation. In addition, we 
study the period post Bretton Woods, so that changes in the exchange 
rate better approximate an unexpected and permanent shock in costs. 
Overall, in our exploratory results, we find some evidence of non- linear 
effects. This evidence is stronger for flexible exchange countries. We 
will discuss the dimensions in which this result is robust, and the ones 
in which it is not.

A. Data

We start from the whole sample of Consumer Price Index and Exchange 
rate data from the International Financial Statistics database from the 
IMF. For the CPI index we use “CPI of all items.” For the Exchange rate 
we use the end- of- period exchange rate in units of domestic currency 
per unit of US dollars.37 With this data we construct an initial unbal-
anced panel {pi,t, Dei,t}i∈I ,t∈Ti where I  is the set of all countries and Ti is 
the set of dates for which observations are available for country i. To be 
consistent with the setups described in sections III and IV, we restrict 
the sample in two dimensions. First, by focusing on low- inflation coun-
tries. As discussed in section IV, the result that the impact effect is sec-
ond order for  state- dependent models, Proposition 1, is accurate for low 
levels of inflation because as inflation increases the  higher- order terms 
also increase. Still, to identify the effects of large shocks, large devalua-
tions/revaluations are needed in the sample and these events are some-
times associated with countries experiencing moderate and high infla-
tion rates. With this  trade- off in mind, we restrict the sample as follows: 
we include the inflation rate of country i in period t in the sample if the 
10- year moving average of annual inflation is less than 8% (for our 
baseline specification).38 Second, we further restrict the sample by fo-
cusing on the observations after Bretton Woods. The once- and- for- all 
monetary shock has two main features: it is unexpected and permanent. 
The evidence in this direction favors flexible exchange rate countries. To 
classify a country as a flexible exchange rate country, we follow the clas-
sifications of Reinhart and Rogoff (2004), Ilzetzki, Reinhart, and Rogoff 
(2008), and Levy- Yeyati and Sturzenegger (2003). With these two re-
strictions, we obtain a (unbalanced) panel for our main specification.39

Table 1 summarizes inflation, devaluations, and other main features 
of our panel data (see table H1 in appendix H for more information). 
There are 13,025 observations in the main sample. The panel is unbal-
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anced because of different data availability among countries for the CPI 
and exchange rate data and because countries enter and exit the sample 
over time depending on their inflation rates. For inflation, we report 
the mean and volatility of annual inflation. For devaluation, we report 
mean and volatility of our main independent variable, monthly devalu-
ation. Note that the mean devaluation is not zero, but the mean is usu-
ally at least an order of magnitude smaller than the volatility. The num-
ber of devaluations/revaluations that are higher than 7, 10, and 15% 
are 368, 131, and 22, respectively. Our preferred specification focuses 
on the sample of countries that are not classified as fixed exchange rate 
regimes by Ilzetzki, Reinhart, and Rogoff (2008). For this sample, mean 
and volatility of inflation is slightly higher and the number of devalua-
tions/revaluations that are higher than 7, 10, and 15% are 229, 88, and 
18, respectively.

B. Specification

Our baseline specification is given by:

 pi,(t,t+h) = ai + dt + bhDei,t + gh(Dei,t)2sign(Dei,t) + ´it
p, (34)

where pi,(t,t+h) is the inflation rate of country i on the period from date t 
to date t + h, ∆et is the devaluation from date t – 1 to date t, and both 
variables are measured in percent, so that Dei,t = 1 is 1%.40 The struc-
tural innovation is given by ́ it

p. The first term in the regression is a fixed 

Table 1
Descriptive Statistics

No. Large 
Innovations | De |

Sample  Mean(π)  SD(π)  Mean(∆e)  SD(∆e)  >7%  >10%  >15%

Post–1974 Sample, Inflation Threshold 8%
All countries (13,025 obs.) 3.51 3.76 0.08 2.81 368 131 22
No fixed ER (6,137 obs.) 3.14 3.38 0.14 3.00 229 88 18

Post–1990 Sample, Inflation Threshold 8%
All countries (8,488 obs.) 2.95 2.80 0.13 2.87 272 109 18
No fixed ER (5,010 obs.)  2.76  2.75  0.19  3.07  204  82  16

Note: Inflation π is the 12- month percentage change of the CPI. The innovations | De | are 
the percent depreciation (or appreciation) of the bilateral nominal exchange rate versus 
the US dollar over a one- month period. The criterion for including a  country- month ob-
servation in the sample is that the 60- month moving average inflation in that month is 
below 8% (per year) and a per- capita GDP in that  country- month of at least $5,000 (PPP).
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effect for country i that captures unobserved effects that are constant 
over time (e.g., the average inflation rate). The second term is a time 
fixed effect that captures aggregate shocks that are common to the whole 
group of countries. The third term is the linear component of the pass- 
through where the coefficient bh measures the impact of a devaluation 
on period t over inflation on the period that goes from t to t + h. The 
fourth term measures whether large changes in the exchange rate have 
a higher pass- through. If this is the case for horizon h we should expect 
that gh > 0. Note that the sign(⋅) operator is introduced for symmetry.41

One note of caution is due: the regression coefficient can be inter-
preted as a measure of the response of inflation to an exogenous nomi-
nal exchange rate innovation under the assumption that the shock is 
orthogonal to the other regressors and unanticipated. This assump-
tion, which gave us a motive to focus on flexible exchange rate coun-
tries where exchange rates are close to random walks, must be taken 
with caution. First, the specification implies that changes in inflation 
do not feed back in devaluation by directly assuming that the nominal 
exchange rate follows a random walk with its own structural shocks. 
Second, it can be the case that large swings on the exchange rate are 
associated with some particular observable or unobservable economic 
conditions that are not modeled; that is, shocks to the exchange rate are 
not orthogonal. For example, a large devaluation might occur after a 
sustained appreciation of the real exchange rate. In this case, a large de-
valuation could imply a lower pass through (see, e.g., Burstein, Eichen-
baum, and Rebelo 2005; Burstein and Gopinath 2014). In addition, de-
valuations might occur during bad times, as in Kehoe and Ruhl (2009), 
or might actually occur as the equilibrium response to real shocks as 
suggested in Burstein, Eichenbaum, and Rebelo (2007).

C. Main Results

The results for our main specification are in table 2. Overall, we find 
some evidence of nonlinear effects. In particular, we find a statisti-
cally significant correlation between large devaluations/revaluations 
and higher inflation transmission for the complete sample and for the 
sample where we restrict to countries not classified as having fixed 
an exchange rate regime as defined in Ilzetzki, Reinhart, and Rogoff 
(2008). First, in the top panel of table 2 we report the results of a panel 
regression of equation (34) for the sample excluding fixed exchange 
rate countries post- 1974. As one would expect, the total pass- through 
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of exchange rate into prices increases with the horizon; from 0.01 after 
one month to around 0.1 after two years for a 1% shock. The nonlin-
ear component of the pass- through is statistically different from zero, 
and it is quantitatively relevant for large shocks. The estimated coef-
ficients imply that a devaluation (revaluation) of 10% is associated 
with a 0.2% point of increase in the inflation rate on impact. The non-

Table 2
Inflation Pass- Through: Baseline Specification

1974–2014 Sample, Excluding Fixed ER Countries  
(6,811 Obs.)

Horizon h:  1 Month  3 Months  6 Months  12 Months  24 Months

βh (linear term) 0.009** 0.027*** 0.056*** 0.053*** 0.098***
(0.004) (0.008) (0.012) (0.016) (0.023)

γh × 100 (quadratic term) 0.114*** 0.152*** 0.104 0.111 –0.060
(0.027) (0.054) (0.106) (0.133) (0.158)

R2  0.20  0.31  0.41  0.51  0.62

1974–2014 Sample, All Countries (13,723 Obs.)

Horizon h:  1 Month  3 Months  6 Months  12 Months  24 Months

βh (linear term) 0.019*** 0.039*** 0.062*** 0.091*** 0.184***
(0.004) (0.010) (0.013) (0.021) (0.024)

γh × 100 (quadratic term) 0.058** 0.166 0.097 0.104 –0.448***
(0.028) (0.112) (0.140) (0.257) (0.149)

R2  0.11  0.19  0.28  0.39  0.46

1990–2014 Sample, All Countries (9,179 Obs.)

horizon h:  1 Month  3 Months  6 Months  12 Months  24 Months

βh (linear term) 0.009*** 0.033*** 0.060*** 0.074*** 0.109***
(0.003) (0.006) 0.009) (0.012) (0.019)

γh × 100 (quadratic term) 0.088*** 0.105** 0.008 –0.088 –0.314***
(0.021) (0.045) (0.066) (0.073) (0.107)

R2  0.17  0.28  0.37  0.47  0.53

Note: All regressions include time and country fixed effects. Exchange rates for all coun-
tries except the United States are expressed as the bilateral exchange rate with the United 
States, and as the effective exchange rate for the United States. The sample excluding 
fixed ER countries drops countries with a preannounced or de facto peg, crawling peg, or 
band narrower than ±2%  using the Ilzetzki, Reinhart, and Rogoff (2008) exchange rate 
regime classification. The criterion for including a  country- month observation in the 
sample is that the 60- month moving average inflation in that month is below 8% (per 
year) and a per- capita GDP in that  country- month of at least $5,000 (PPP). Robust stan-
dard errors in parenthesis. See section V for details.
***Significant at the 1% level.
**Significant at the 5% level.
*Significant at the 10% level.
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linear component is significant at the  three- month horizon. Second, in 
the mid- panel we report the estimates of equation (34) obtained when 
using all countries (i.e., not tossing those classified as fixed exchange 
rate regimes). In this case, the nonlinear component decreases, but it 
is still statistically significant. We notice that in this sample the total 
pass- through is higher at every horizon compared to the sample that 
excludes “fixed exchange rate countries,” both through the linear and 
nonlinear component. The inclusion in the sample of countries that are 
on a fixed exchange rate arrangement also gives rise, across several 
specifications, to a significant and negative coefficient for the nonlinear 
term at the 24- month horizon. None of the theories that we reviewed 
can fit this pattern, which we find puzzling. We conjecture that this 
may be related to the low pass- through of large devaluations that can 
happen (in countries on a fixed exchange rate regime) as a response to 
a persistent misalignment of the real exchange rate, as documented in 
Burstein, Eichenbaum, and Rebelo (2005), and Burstein and Gopinath 
(2014). Finally, in the bottom panel of table 2 we restrict to a sample 
with both fixed and flexible exchange rate countries, but with observa-
tions after 1990. The nonlinear component is again significant, with a 
smaller overall pass- through than in the middle panel. This is consis-
tent with the evidence of a lower pass- through post- 1990 discussed in  
Taylor (2000).

D. Robustness

We perform six robustness checks (corresponding to table 3 to table 8) 
to our main specification and sample (table 2). The results are robust to 
a different nonlinear specification (table 3), to the definition of low infla-
tion country (table 4), to the removal of time fixed effects (table 5), to the 
exclusion of countries whose exchange rate regime is unclassified (table 
6), and to a different classification of exchange rate regimes (table 7). 
Instead, the results lose statistical significance if we remove “outliers” 
as identified by the largest devaluation (table 8). We next discuss each 
one of these robustness checks in more detail.

In table 3 we show that the results are robust to a different nonlinear 
specification. In particular, we estimate the following:

 pi,(t,t+h) = ai + dt + bhDei,t + ghDei,tI(Dei,t > K) + ´it
p, (36)

where the only difference with equation (34) is the introduction of 
I(Det > K), as an indicator of whether the devaluation (or revaluation) 
in period t was higher than K% in absolute value instead of the qua-
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dratic term. We report results for K = 10, but we also check robustness 
for K = 5, 20. There is evidence of nonlinearity for the sample of coun-
tries that are not classified as a fixed exchange rate regime. The evi-
dence is weaker for the sample of all countries. The linear portion of 
the pass- through is in line with the one for the main specification in 
table 2. We also run a nonlinear specification with a cubic nonlinear 

Table 3
Inflation Pass- Through: Piecewise Linear Specification

1974–2014 Sample, Excluding Fixed ER Countries  
(6,816 Obs.)

Horizon h:  1 Month  3 Months  6 Months  12 Months  24 Months

βh (linear term) 0.015*** 0.034*** 0.058*** 0.058*** 0.094***
(0.004) (0.007) (0.009) (0.014) (0.020)

γh × 100 (nonlinear term) 0.017** 0.027* 0.027 0.019 –0.006
(0.008) (0.016) (0.023) (0.035) (0.049)

R2  0.30  0.45  0.41  0.51  0.62

1974–2014 Sample, All Countries (13,733 Obs.)

Horizon h:  1 Month  3 Months  6 Months  12 Months  24 Months 

βh (linear term) 0.022*** 0.047*** 0.064*** 0.092*** 0.157***
(0.004) (0.007) (0.010) (0.014) (0.022)

γh × 100 (nonlinear term) 0.012* 0.027 0.029 0.033 –0.047
(0.007) (0.018) (0.024) (0.038) (0.046)

R2  0.16  0.26  0.28  0.39  0.46

1990–2014 Sample, All Countries (9,184 Obs.)

Horizon h:  1 Month  3 Months  6 Months  12 Months  24 Months

βh (linear term) 0.014*** 0.038*** 0.059*** 0.072*** 0.100***
(0.003) (0.005) (0.007) (0.011) (0.017)

γh × 100 (nonlinear term) 0.014** 0.017 0.004 –0.020 –0.066**
(0.006) (0.011) (0.014) (0.022) (0.032)

R2  0.30  0.44  0.37  0.47  0.53

Note: All regressions include time and country fixed effects. Exchange rates for all coun-
tries except the United States are expressed as the bilateral exchange rate with the United 
States, and as the effective exchange rate for the United States. The sample excluding 
fixed ER countries drops countries with a preannounced or de facto peg, crawling peg, or 
band narrower than ±2%  using the Ilzetzki, Reinhart, and Rogoff (2008) exchange rate 
regime classification. The piecewise linear specification uses a threshold for large devalu-
ations equal to 10%. The criterion for including a  country- month observation in the 
sample is that the 60- month moving average inflation in that month is below 8% (per 
year) and a per- capita GDP in that  country- month of at least $5,000 (PPP). Robust stan-
dard errors in parenthesis. See section V for details.
***Significant at the 1% level.
**Significant at the 5% level.
*Significant at the 10% level.
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term (instead of the quadratic) and the results are similar (table not 
displayed).

In table 4 we show that the results are robust to a different definition 
of low- inflation country. We run the baseline specification under differ-
ent samples depending on the inflation threshold that we use for the 
moving average. Recall that in the main sample an observation for 
country i in period t is in the sample if pi,t

MA = (∑k=−60
k=60 pi,t+ k) / 120 ≤ K = 8. 

We find that, if the threshold used is too low, for example, a K = 4, the 
nonlinear term gh is not significant. This is also the case if the inflation 

Table 4
Robustness: Inflation Pass- Through on Impact (1 Month)

1974–2014 Sample: All Countries

Inflation threshold below: 4%  5%  6%  8%  10%

Nonlinear effect × ✓✓✓ ✓✓ ✓✓ ×
No. obs.  8,263  9,774  11,030  13,723  16,157

1974–2014 Sample: Excluding Fixed ER Countries

Inflation threshold below: 4%  5%  6%  8%  10%

Nonlinear effect × ✓✓✓ ✓✓✓ ✓✓✓ ×
No. obs.  4,566  5,240  5,795  6,811  7,587

1990–2014 Sample: All Countries

Inflation threshold below: 4%  5%  6%  8%  10%

Nonlinear effect × ✓✓✓ ✓✓✓ ✓✓✓ ✓

No. obs.  6,678  7,651  8,314  9,179  9,813

1990–2014 Sample: Excluding Fixed ER Countries

Inflation threshold below: 4%  5%  6%  8%  10%

Nonlinear effect × ✓✓✓ ✓✓✓ ✓✓✓ ✓

No. obs.  4,227  4,751  5,145  5,684  5,997

Note: All regressions include time and country fixed effects. Standard errors are com-
puted using Stata robust options to deal with minor problems about normality, heterosce-
dasticity, or some observations that exhibit large residuals, leverage, or influence. The 
sample excluding fixed ER countries drops countries with a preannounced or de facto 
peg, crawling peg, or band narrower than ±2%  using the Ilzetzki, Reinhart, and Rogoff 
(2008) exchange rate regime classification. The criterion for including a  country- month 
observation in the sample is that the 60- month moving average inflation in that month is 
below 8% (per year) and a per- capita GDP in that  country- month of at least $5,000 (PPP).
✓✓✓ Significant at the 1% level.
✓✓ Significant at the 5% level.
✓ Significant at the 10% level.
× Not statistically different from zero at the 10% level.
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threshold is set too high. For example, for a threshold of 10%, results are 
not significant for the post- 1974 samples, and significant at 10% confi-
dence level for the post- 1990 sample. Still, the nonlinear term cannot be 
rejected for the thresholds of 5, 6, and 8% for the samples post- 1974 and 
post- 1990 for all countries.

In table 5 we show that the results are robust to removing time fixed 

Table 5
Inflation Pass- Through: Excluding Time Fixed Effects

1974–2014 Sample, Excluding Fixed ER Countries  
(6,811 Obs.)

Horizon h:  1 Month  3 Months  6 Months  12 Months  24 Months

βh (linear term) –0.005 –0.000 0.008 0.000 –0.016
(0.003) (0.006) (0.011) 0.015) (0.022)

γh × 100 (quadratic term) 0.119*** 0.172*** 0.193 0.168 0.102
(0.027) (0.056) (0.123) (0.146) (0.177)

R2  0.05  0.11  0.18  0.28  0.40

1974–2014 Sample, All Countries (13,723 Obs.)

Horizon h:  1 Month  3 Months  6 Months  12 Months  24 Months

βh (linear term) 0.013*** 0.026*** 0.031*** 0.058*** 0.096***
(0.004) (0.008) (0.012) (0.019) (0.022)

γh × 100 (quadratic term) 0.039 0.117 0.132 0.072 –0.326*
(0.035) (0.101) (0.140) (0.258) (0.186)

R2  0.02  0.06  0.11  0.17  0.23

1990–2014 Sample, All Countries (9,179 Obs.)

Horizon h:  1 Month  3 Months  6 Months  12 Months  24 Months

βh (linear term) –0.005* 0.001 0.002 0.001 –0.006
(0.002) (0.005) (0.008) (0.011) (0.016)

γh × 100 (quadratic term) 0.108*** 0.154*** 0.165* 0.069 –0.063
(0.021) (0.045) (0.090) (0.088) (0.112)

R2  0.05  0.11  0.18  0.27  0.38

Note: All regressions include country fixed effects. Exchange rates for all countries except 
the United States are expressed as the bilateral exchange rate with the United States, and 
as the effective exchange rate for the United States. The sample excluding fixed ER coun-
tries drops countries with a preannounced or de facto peg, crawling peg, or band nar-
rower than ±2%  using the Ilzetzki, Reinhart, and Rogoff (2008) exchange rate regime 
classification. The criterion for including a  country- month observation in the sample is 
that the 60- month moving average inflation in that month is below 8% (per year) and a 
per- capita GDP in that  country- month of at least $5,000 (PPP). Robust standard errors in 
parenthesis.
***Significant at the 1% level.
**Significant at the 5% level.
*Significant at the 10% level.
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effects. The idea is that adding time fixed effects would remove ag-
gregate shock to the exchange rate common to all other countries; for 
example, a change in the US monetary policy. Results regarding the 
nonlinearity of the impact effect are robust in this specification as well.42

In table 6 we show that the results are robust to the exclusion of coun-
tries that are not classified by Ilzetzki, Reinhart, and Rogoff (2008). This 

Table 6
Robustness: Excluding Unclassified Countries

1974–2010 Sample, Excluding Fixed ER Countries  
(3,896 Obs.)

Horizon h:  1 Month  3 Months  6 Months  12 Months  24 Months

βh (linear term) 0.008 0.013 0.029** 0.029* 0.081***
(0.005) (0.009) (0.012) (0.017) (0.024)

γh × 100 (quadratic term) 0.096*** 0.149*** 0.134 0.138 –0.034
(0.021) (0.038) (0.089) (0.119) (0.152)

R2  0.26  0.41  0.55  0.61  0.69

1974–2010 Sample, All Countries (10,808 Obs.)

Horizon h:  1 Month  3 Months  6 Months  12 Months  24 Months

βh (linear term) 0.024*** 0.044*** 0.062*** 0.097*** 0.188***
(0.005) (0.010) (0.014) (0.023) (0.026)

γh × 100 (quadratic term) 0.029 0.133 0.079 0.090 –0.434***
(0.032) (0.111) (0.140) (0.275) (0.148)

R2  0.11  0.19  0.29  0.40  0.47

1990–2010 Sample, All Countries (6,436 Obs.)

Horizon h:  1 Month  3 Months  6 Months  12 Months  24 Months

βh (linear term) 0.011*** 0.029*** 0.045*** 0.065*** 0.100***
(0.004) (0.007) (0.009) (0.014) (0.021)

γh × 100 (quadratic term) 0.064*** 0.082** 0.023 –0.074 –0.294***
(0.023) (0.041) (0.061) (0.074) (0.100)

R2  0.18  0.30  0.42  0.48  0.54

Note: All regressions include time and country fixed effects. Exchange rates for all coun-
tries except the United States are expressed as the bilateral exchange rate with the United 
States, and as the effective exchange rate for the United States. The sample excluding 
fixed ER countries drops countries with a preannounced or de facto peg, crawling peg, or 
band narrower than ±2%  using the Ilzetzki, Reinhart, and Rogoff (2008) exchange rate 
regime classification. We exclude from the sample unclassiffied countries. The criterion 
for including a  country- month observation in the sample is that the 60- month moving 
average inflation in that month is below 8% (per year) and a per- capita GDP in that 
 country- month of at least $5,000 (PPP). Robust standard errors in parenthesis. See section 
V for details.
***Significant at the 1% level.
**Significant at the 5% level.
*Significant at the 10% level.
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will decrease the number of total observations. In this case, the two- 
year linear pass- through is again in line with the the main specification. 
Nonlinear effects are rejected for the sample of all countries (fixed and 
flex), but cannot be rejected for the sample excluding the fixed exchange 
rate countries, as we can see from the top panel. For the sample of fixed 
and flexible exchange rate countries post- 1990, nonlinear effects cannot 
be rejected.

In table 7 we show that the results are robust to a different classifica-
tion of fixed exchange rate countries. In particular, we rerun the main 
specification for the main sample using the classification in Levy- Yeyati 
and Sturzenegger (2003). The linear component of the pass- through is 
again similar to the one in table 2. Nonlinear effects cannot be rejected 
on impact.

In table 8 we show that the statistical significance of the nonlinear 
term is not robust to dropping “outliers.” In particular, in table 8 we 
present the results of estimating our main specification for each sample 
and dropping the observation (country- month pair) with the largest 
devaluation of the exchange rate. Thus, the size of the sample of table 2  
and table 8 differ by one observation. The consequence of dropping 
the largest outlier is to yield a substantial increase in the standard er-
rors of the estimated coefficients and a modest change of their values. 
In particular, in most cases the coefficient corresponding to the non-
linear term is no longer statistically significant at conventional confi-
dence levels. We also tried dropping the two largest devaluations, and 
the results are similar (results not shown). Instead, dropping one or 
more observations with the highest inflation rates has no effect on the 
results. We conclude with one remark on large devaluations in our 
sample and the notion of “outliers” in our empirical analysis. Large 
devaluations are obviously crucial to our analysis of size- dependent 
propagation of shocks: absent large devaluations, we could not imple-
ment our analysis. Our quest for low- inflation countries and large de-
valuations makes it hard to gather a lot of observations that are useful 
to estimate the nonlinear effect. As shown in table 1, the sample that 
excludes the countries on a fixed ER regime has only 18 devaluations 
larger than 15%, and only 5 devaluations larger than 20% (not reported 
in the table). Indeed, the largest one is the 46% devaluation by South 
Korea (in 1996) and the second largest is around 22%. Dropping the Ko-
rean “outlier” is critical for the statistical significance of the nonlinear 
coefficient in our baseline regression. As mentioned, this is a single but 
important observation that is relevant in our sample of low- inflation 
countries that feature a few large devaluations.
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VI. Concluding Remarks

We showed analytically that in a broad class of models the propaga-
tion of a monetary impulse is independent of the nature of the sticky 
price friction when shocks are small. In particular, we proved that for 
economies with low inflation the total cumulated output response is 
approximately the same in TD and SD models, provided the models 

Table 7
Inflation Pass- Through: Levy- Yeyati and Sturzenegger Classification

1974–2014 Sample, Excluding Fixed ER Countries  
(9,570 Obs.)

Horizon h:  1 Month  3 Months  6 Months  12 Months  24 Months

βh (linear term) 0.011*** 0.031*** 0.065*** 0.088*** 0.125***
(0.004) (0.007) (0.011) (0.014) (0.020)

γh × 100 (quadratic term) 0.108*** 0.160** 0.082 –0.010 –0.227*
(0.036) (0.076) (0.121) (0.133) (0.130)

R2  0.29  0.44  0.42  0.54  0.61

1974–2014 Sample, All Countries (13,733 Obs.)

Horizon h:  1 Month  3 Months  6 Months  12 Months  24 Months

βh (linear term) 0.020*** 0.040*** 0.064*** 0.092*** 0.184***
(0.004) (0.010) (0.013) (0.021) (0.024)

γh × 100 (quadratic term) 0.057** 0.166 0.091 0.097 –0.448***
(0.028) (0.112) (0.138) (0.255) (0.149)

R2  0.16  0.26  0.28  0.39  0.46

1990–2014 Sample, All Countries (9,184 Obs.)

Horizon h:  1 Month  3 Months  6 Months  12 Months  24 Months

βh (linear term) 0.010*** 0.033*** 0.060*** 0.074*** 0.109***
(0.003) (0.006) (0.009) (0.012) (0.019)

γh × 100 (quadratic term) 0.088*** 0.109** 0.008 –0.088 –0.314***
(0.022) (0.046) (0.066) (0.073) (0.107)

R2  0.30  0.44  0.37  0.47  0.53

Note: All regressions include time and country fixed effects. Exchange rates for all coun-
tries except the United States are expressed as the bilateral exchange rate with the United 
States, and as the effective exchange rate for the United States. The sample excluding 
fixed ER countries drops countries with a preannounced or de facto peg, crawling peg, or 
band narrower than ±2%  using the Levy- Yeyati and Sturzenegger (2003) exchange rate 
regime classification. The criterion for including a  country- month observation in the 
sample is that the 60- month moving average inflation in that month is below 8% (per 
year) and a per- capita GDP in that  country- month of at least $5,000 (PPP). Robust stan-
dard errors in parenthesis. See section V for details.
***Significant at the 1% level.
**Significant at the 5% level.
*Significant at the 10% level.
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are fit to the same frequency of adjustment and the same kurtosis of the 
size of price changes. These results are quite robust: we show that they 
also apply in the presence of moderate rates of  steady- state inflation. 
The main message from these results is that, as long as one is interested 
in understanding the propagation of small monetary shocks, what mat-
ters are the frequency and the kurtosis that the models are fitted to. In 

Table 8
Inflation Pass- Through: Excluding Outliers

1974–2014 Sample, Excluding Fixed ER Countries  
(6,810 Obs.)

Horizon h:  1 Month  3 Months  6 Months  12 Months  24 Months

βh (linear term) 0.006 0.021** 0.034** 0.028 0.075**
(0.006) (0.010) (0.015) (0.023) (0.035)

γh × 100 (quadratic term) 0.154* 0.251 0.443* 0.482 0.280
(0.084) (0.163) (0.253) (0.389) (0.570)

R2  0.20  0.31  0.41  0.51  0.62

1974–2014 Sample, All Countries (13,722 Obs.)

Horizon h:  1 Month  3 Months  6 Months  12 Months  24 Months

βh (linear term) 0.020*** 0.029** 0.044*** 0.061** 0.186***
(0.005) (0.013) (0.014) (0.027) (0.030)

γh × 100 (quadratic term) 0.048 0.323 0.364* 0.543 –0.479
(0.065) (0.200) (0.210) (0.420) (0.394)

R2  0.11  0.19  0.28  0.39  0.46

1990–2014 Sample, All Countries (9,178 Obs.)

Horizon h:  1 Month  3 Months  6 Months  12 Months  24 Months

βh (linear term) 0.009* 0.029*** 0.048*** 0.070*** 0.119***
(0.005) (0.009) (0.011) (0.018) (0.027)

γh × 100 (quadratic term) 0.099 0.167 0.175 –0.026 –0.462
(0.063) (0.128) (0.138) (0.240) (0.348)

R2  0.17  0.28  0.37  0.47  0.53

Note: All regressions include time and country fixed effects. To examine the effect of out-
liers, the largest devaluation in each sample is excluded. Exchange rates for all countries 
except the United States are expressed as the bilateral exchange rate with the United 
States, and as the effective exchange rate for the United States. The sample excluding 
fixed ER countries drops countries with a preannounced or de facto peg, crawling peg, or 
band narrower than ±2%  using the Ilzetzki, Reinhart, and Rogoff (2008) exchange rate 
regime classification. The criterion for including a  country- month observation in the 
sample is that the 60- month moving average inflation in that month is below 8% (per 
year) and a per- capita GDP in that  country- month of at least $5,000 (PPP). Robust stan-
dard errors in parenthesis.
***Significant at the 1% level.
**Significant at the 5% level.
*Significant at the 10% level.
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short, the underlying nature of the nominal friction is irrelevant for the 
propagation of small shocks. Instead, the propagation of large shocks 
depends on the nature of the friction: the impulse response of inflation 
to monetary shocks is independent of the shock size in time- dependent 
models, while it is nonlinear in  state- dependent models.

We devised a simple test for the presence of such nonlinear effects 
using data on exchange rate devaluations and inflation for a panel of 
countries from 1974 to 2014. We presented some evidence of a nonlin-
ear effect of exchange rate changes on prices in a sample of  flexible-  
exchange rate countries with low inflation. Our baseline results are ro-
bust to different functional form specifications (piecewise linear, qua-
dratic, or distributed lags), as well as different controls (e.g., the same 
results appear when controlling for GDP growth rates, when no time 
fixed effects are used, or when a different exchange rate regime classi-
fication is used). We also highlight some dimensions along which these 
empirical patterns are not robust. The nonlinear effect is not robust to 
the introduction of fixed exchange rate countries into the full sample, 
and it is not robust to removing outliers as defined by the size of the 
large devaluations. In particular, removing the largest devaluation from 
the sample drastically increases the standard errors of the nonlinear 
coefficient on impact, making them statistically not significant at con-
ventional confidence levels. Nevertheless, dropping large outliers ei-
ther increases or yields very similar point estimates of the nonlinear 
coefficient.

Appendix A

General Equilibrium Setup

The general equilibrium setup is essentially the one in Golosov and 
Lucas (2007), adapted to multiproduct firms (see appendix B in Alvarez 
and Lippi [2014] for details). Households have a constant discount rate 
r and an instantaneous utility function that is additively separable: a 
CES consumption aggregate c, linear in labor hours ℓ, log in real bal-
ances M / P, with constant intertemporal elasticity of substitution 1 / ´ 
for the consumption aggregate, so that the labor supply elasticity to real 
wages is 1 / ´ − 1.

HH Lifetime Utility:
0

∞

∫ e−r t c(t)1−´ − 1
1 − ´

− aℓ(t) + log M(t)
P(t)

⎛
⎝⎜

⎞
⎠⎟
dt (A1)
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with CES aggregate:

 c(t) =
0

1

∫
i=1

n

∑[Aki(t)cki(t)](1−1/r)⎛
⎝⎜

⎞
⎠⎟

[r/(r−1)](1−1/h)

dk
⎛

⎝⎜
⎞

⎠⎟

h/(h−1)

. (A2)

The specification assumes a continuum of Dixit- Stiglitz monopolistic 
sellers, index by k. Each seller sells n goods, indexed by the subscript i, 
where η > 1 is the substitution elasticity between sellers (or varieties) 
and ρ is the elasticity of substitution between products for each seller. If 
the elasticities of substitution are the same, that is, ρ = η, then we have 
the simpler expression:

c(t) =
0

1

∫
i=1

n

∑[Aki(t)cki(t)]1−1/hdk
⎛
⎝⎜

⎞
⎠⎟

h/(h−1)

To keep the expenditure shares stationary across goods in the face of 
the permanent idiosyncratic shocks, we assume offsetting preference 
shocks Aki.43

The budget constraint of the representative agent is

M(0) +
0

∞

∫ Q(t)[P(t) + t(t) + W(t)ℓ(t) − R(t)M(t) −
0

1

∫ ∑ i=1 Pk, i(t)cki(t)dk]dt = 0,

where R(t) is the nominal interest rates, Q(t) = exp(− ∫0
t R(s)ds) the price 

of a nominal bond, W(t) the nominal wage, t(t) the lump sum nominal 
transfers, and P(t) the aggregate (net) nominal profits of firms.

A convenient implication of this setup is that nominal wages are pro-
portional to the money supply in equilibrium, so that a monetary shock 
increases the firms’ marginal costs proportionately. In particular, from 
the  first- order conditions of the households’ problem we obtain that

 W(t) = a(r + p)M(t), (A3)

where π is coming from a  steady- state growth in money supply, as we 
will detail below. For futher reference, we can also obtain that

 c(t)−´ = a

1 + tl

P(t)
W(t)

. (A4)

This equation will pin down the impulse response function of output. 
In particular, note that the deviation of output from its  steady- state level 
will depend on the deviation of the price level from the  steady- state 
price level.
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Optimal Firm- Decision Rules and Price Gaps

In this section we show that, in equilibrium, the nonlinear profit func-
tion of the firm can be replaced by a simple quadratic objective function 
that depends exclusively on the firm’s price gaps. This simplifies the 
solution of the problem, first by simplifying the state space of the firm, 
and second by allowing an analytical solution of the firms’s decision 
rules.

An Approximation to the Profit Function: We describe how the profits 
of the firms, once we replace the demand from the household  first- order 
conditions problem, as well as using the equilibrium values of nominal 
wages and nominal interest rates. From here we obtain two results: a 
description of the state of the firm’s problem, and a characterization (up 
to second order) of the objective function of the firm. We note that the 
firm’s profit depend on nominal wages, nominal interest rates, but also 
aggregate consumption, trough its determination of equilibrium real 
rates as well as a shifter of the firm’s individual demand. Thus, if we let 
V(pk, c; pk) be the value of the firm k gross profits (i.e., without subtract-
ing the observation and/or menu costs) as a function of initial price gap 
vector pk, and for an arbitrary stochastic process for prices pk, and a 
path of aggregate consumption c, we can show (see appendix B in Al-
varez and Lippi [2014]) that:

 

V(pk, c; pk) = −Y
W(0)
W(0)

⎛
⎝⎜

⎞
⎠⎟
E

0

∞

∫ e−rtB
i=1

n

∑gik2 (t)⎛
⎝⎜

⎞
⎠⎟
dt gk(0) = gk

⎡
⎣⎢

⎤
⎦⎥

+ E
0

∞

∫ e−rto ||(gk(t), c(t) − c)||2( ) dt gk(0) = gk⎡
⎣

⎤
⎦

    + i(d, c),

 (A5)

where Y > 0 is a function only on W(0) / W  and where i(⋅) is only a 
function of δ and the path of consumption and where o(x) denotes a 
function that is of smaller order than x. In particular, this means that 
there are no interactions between gki(t)c(t), and hence c(t) does not im-
pact, up to first order, the determination of the optimal prices, pro-
vided that the price gaps and the shock are both small. Moreover, if we 
include the menu and observation cost, they can be measured in terms 
of frictionless profits; for instance, the normalized menu cost will be 
c = cm / P̂(0), where the normalized profit function P̂ is defined be-
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low. Importantly, note that aggregate consumption does not feature on 
this problem, that is, it does not interact with the price gaps. Finally, 
the constant B = (1 / 2)h(h − 1). If the elasticity of substitution η be-
tween firms and the n products produced by a firm have elasticity ρ is 
different, then instead of B(∑ i=1

n gki2(t)) the quadratic approximation 
gives:

 r(h − 1)
2n i=1

n

∑gki2(t)⎛
⎝⎜

⎞
⎠⎟
− (r − h)(h − 1)

2n2
i=1

n

∑gki(t)
⎛
⎝⎜

⎞
⎠⎟

2

. (A6)

Note this is a function of two scalars, the sum of the squares of the price 
gaps, omitting the firm’s index k we have: y ≡ ∑ j=1

2 gj
2  as well as the 

sum of price gaps z ≡ ∑ j=1
2 gj.

Deriving the Approximation: The remainder of this section provides 
details to show the result in equation (A5) first, given that cost shocks 
follow a random walk, and that nominal interest rates are constant, 
wages growth at a constant rate, then current profits of the firm can be 
written as a function of price gaps and of exogenous process. Second, 
consider the discounted nominal profits of the firm k can we written as, 
where for simplicity we consider the case with η = ρ:

Q(t)W(t)Aki(t)Zki(t)1−h !P(c(t), gki(t))

= Q(t)W(t)Aki(t)Zki(t)1−h c(t)1−hee−hgki(t) egik(t) h

h − 1
− 1⎡

⎣⎢
⎤
⎦⎥

,

where we define the profits !P depending only on price gaps and ag-
gregate consumption. Thus we can write the expected discounted prof-
its (not taking into account menu or observation costs) for firm k with 
initial price gap vector pk as:

E
0

∞

∫ Q(t)
i=1

n

∑W(t)Zki(t)1−hAki(t) !P[c(t), gki(t)]
⎛
⎝⎜

⎞
⎠⎟
dt|gk(0) = gk

⎡
⎣⎢

⎤
⎦⎥

with price gaps evolving as

gki(t) = gki − log Zki(t)
Zik(0)

− log W(t)
W(0)

+
t j<t
∑Dgki(t j)

for each product i = 1, . . . , n.
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Then 

 V(pk, c; pk) ≡ E
0

∞

∫ e−(r+p)t

i=1

n

∑W(t)c(t)1−´hP̂(gik(t))
⎛
⎝⎜

⎞
⎠⎟
dt| g(0) = g

⎡
⎣⎢

⎤
⎦⎥
, (A7)

where we define the normalized profits as

P̂(g) ≡ e−hg eg h

h − 1
− 1⎡

⎣⎢
⎤
⎦⎥
.

Conducting an expansion in equation (A7) around zero price gaps and 
zero aggregate shock (i.e.,  stead-  state consumption), we obtain equa-
tion (A5).

Price Gaps, State Space, and Aggregate Shocks: Consider the case of 
zero inflation π = 0. The combination of the different assumptions 
give that: (a) idiosyncratic shocks to cost, and hence price gaps, are 
driftless random walks, (b)  steady- state inflation is zero (π = 0), and 
(c) strategic complementarities of aggregate consumption do not (first 
order) affect optimal decision rules. In turn, (a–c) imply that, as stated 
above, both in  state- dependent and time- dependent models, when 
prices are adjusted, the price gap is closed. Also, as a corollary, in 
 state- dependent models the state for problem of the firm is given by 
the n- dimensional vector of the price gaps, and the inaction set have 
relatively simple form. For instance, for n = 1 product, the inaction set 
is an interval, and for n > 1 when the elasticities are the same ρ = η, 
and uncorrelated shocks across products (s = 0), it is a hypersphere. 
Furthermore, after a once- and- for- all shock aggregate nominal shock 
starting from a steady state, we have that (d) equilibrium nominal 
wages once and for, and (e) equilibrium nominal interest rates are 
constant. Thus, (a–e) imply that for an impulse response function we 
can assume that the decision rules of the firms stay the same before 
and after the aggregate shock. In particular, to compute the price level, 
the only effect is to instantaneously and simultaneously for all firms 
and products, price gaps are reduced by the same percentage, and 
subsequently price changes are given by the same decision rules as in 
steady state.

GE Version of Impulse Response Function

Note that we can use the general equilibrium model that we just speci-
fied to re- interpret the cost shock in equation (15) as a shock to money 
supply. In particular, the shock that we are studying is produced by a 
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path of money log M(t) = log M(t) + d for all t ≥ 0, where M(t) = Mept 
is the preshock expected path of money, with level M right before the 
shock at time t = 0. Using that the labor market is frictionless, so house-
holds are in their labor supply, this implies that output can we written 
as function or real wages, which using a  first- order approximation can 
we written as:

 log c(t)
c

= 1
´

d − log P(t)
P(t)

⎛
⎝⎜

⎞
⎠⎟

, (A8)

where c  is the constant flexible price equilibrium output and where P(t) 
is the ideal price index at time t ≥ 0 and P(t) is the path of the price level 
in the steady state before the shock, with P(t) = eptP for all t ≥ 0.

Impulse Responses and Price Gaps

Finally, note that to study the response of output and the price level to a 
cost shock (or a monetary shock), under the structure developed in this 
section, one only needs to focus on the distribution of price gaps. First, 
recall that it can be shown that:

 

log P(t)
P(t)

= d +
0

1

∫ 1
n i=1

n

∑(gki(t) − !gki)
⎛
⎝⎜

⎞
⎠⎟
dk

+ 
0

1

∫
i=1

n

∑o(" pki(t) − !pki(t) ")
⎛
⎝⎜

⎞
⎠⎟
dk.

 (A9)

So, the effect over the price level depends, up to first order, on price 
gaps of the firms. These price gaps in turn depend of the current price 
and of the frictionless optimal price. Second, in addition, equation (A5) 
implies that to study the optimal price setting each firm can regard its 
objective function to be quadratic and ignore all the other general equi-
librium effects. Third, since wages adjust on impact, we can simple re-
set every single firm price gap to be δ smaller log points, and track its 
aggregate effect keeping the same optimal rules than in steady state. 
Finally, consumption is related to the price level by equation (A8).

Appendix B

Proofs

Proof (of Lemma 1). Here we use that the invariant density of Brownian 
motion is continuous on the (closure) of the inaction set, that is, on 

This content downloaded from 128.135.003.116 on January 19, 2018 13:13:46 PM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



434 Alvarez, Lippi, and Passadore

{g ∈ Rn:b(g) ≤ 0}. This continuity follows as long as σ > 0. Our proof 
strategy is to fix a boundary given by the function b(⋅; D), and considers 
a discrete time, discrete state representation, with a time period of 
length ∆. We write b(g; D) so that in the discrete time version we let 
b(g; D) > 0 for any point that is outside the inaction set and b(g; D) ≤ 0 
for those inside. In particular, we develop the discrete time version of 
the Kolmogorov forward equation for the density, that is, a difference 
equation in the probabilities evaluated finitely many values of g, de-
noted by f (g; D). We establish that for a value of g for which b(g) = 0, 
then D↓0lim f (g; D) = 0.

We will consider a discrete time, discrete state space representation 
of the vector of price gaps. Time periods are of length ∆ and thus given 
by t = s∆ for nonnegative integers s = 1, 2,…. The state space is given 
by an equally spaced grid with the same step size s D  in each of the n 
dimensions. Thus in each dimension the price gap takes the values 
js D  for the integers j = 0, ±1, ±2,…. To describe the law of motion of 
{g(t)} we will use n + 2 random variables in each period. These random 
variables are i.i.d. trough time, and independent of each other. The 
first two random variables q(t) is used to model the importance of  
the common component relative to the idiosyncratic component of the 
price gap. The variable w(t) is used to model the innovations on the 
common component of each price gap. The remaining n random vari-
ables { !wit}i=1

n  are used to model the innovations on the idiosyncratic 
component of each of the n price gaps. The distribution of the random 
variables are:

q(t) =
0 with probability 1 − r

1 with probability r.

⎧
⎨
⎪

⎩⎪

The random variable w(t) is distributed as:

w(t) =

+1 with probability 1
2

1 − p D

s

⎡
⎣⎢

⎤
⎦⎥

−1 with probability 1
2

1 + p D

s

⎡
⎣⎢

⎤
⎦⎥

⎧

⎨

⎪
⎪

⎩

⎪
⎪

and for each i = 1, . . . , n we have that each of the random variables wi(t) 
are distributed as:
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!wi(t) =

+1 with probability 1
2

1 − p D

s

⎡

⎣
⎢

⎤

⎦
⎥

−1 with probability 1
2

1 + p D

s

⎡

⎣
⎢

⎤

⎦
⎥ .

⎧

⎨

⎪
⎪

⎩

⎪
⎪

Thus we have that each price gap i = 1, . . . , n has changes given by:

gi(t + D) − gi(t) = Ds[q(t + D)w(t + D) + (1 − q(t + D)) !wi(t + D)].

In words: with probability ρ the price gaps of all products i = 1, 2, . . . , 
n move either all up or all down together. With probability 1 – ρ the up 
and down movements are independent across products. In the case of 
an up or a down movement the steps are always of the same size, but 
the probabilities of the up and down are adjusted away from 1/2 to 
take the negative drift into account. With these definitions we have:

E[gi(t + D) − gi(t)] = −pD for all i = 1, 2,… , n,

E[(gi(t + D) − gi(t))2] = s2D for all i = 1, 2,… , n,

E[(gi(t + D) − gi(t))(gj(t + D) − gj(t))] = rs2D for all i ≠ j = 1, 2,… , n.

Take any ′g ≠ g*, so that ′g  is not the optimal return point. Then the 
mass in g comes from adjacent points in the state space that belong to 
the inaction set, that is: 

 
f ( ʹg ; Δ) = ∑{g : ʹgi=gi± Δs, i=1,…,n} f (g; Δ)1{b(g;Δ)≤0}

Pr{ ʹg1 = g1 ± Δs,! , ʹgn = gn ± Δs}.
 (B1)

The indicator makes sure that only mass that comes from points within 
the range of inaction can transit from g to ′g . Note that at most mass 
could come from 2n different points, since in each dimension gi could 
have either increase or decrease.

The same steps then for the one dimensional case apply to the gen-
eral n > 1 dimensional case. For simplicity we concentrate first on the 
case of independence shocks across the products. In this case, we will 
take a value of ′g  for which b( ′g ; D) = 0. For D > 0 but small enough, 
there will be some state g for which ′gi = gi ± Ds and for which 
b(g) > 0. In words, the point ′g  of the state space has fewer than 2n adja-
cent points that belong to the range of inaction that can move to ′g  in 
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exactly one time period of length ∆. We thus have that if b( ′g ; D) = 0 
then #{g: ′gi=gi ± Ds} < 2n.

f ( ′g ; D) ≤ (1 − r) 1
2

1 + p D

s

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟
n

{g : ′gi= gi± Ds , i=1,…,n}
∑ f (g; D)1{b(g;D)≤0}

+ r 1 + p D

s

⎡
⎣⎢

⎤
⎦⎥

[ f ( ′g − Ds; D) + f ( ′g + Ds; D)].

There are two reasons for the inequality. The first is that we use for all 
changes the one with higher probability, the down step. The second is 
that we disregard the possibility that b(g) > 0 when either all the price 
gaps move up or down together (so there is no indicator in the second 
term of the  right- hand side). For small enough ∆ we have:

{g : ′gi= gi± Ds , i=1,…,n}
∑ 1{b(g;D)≤0} ≤ 2n − 1,

so that there is at least one state which uncontrolled will move to ′g , but 
that it does not belong to the inaction set. Thus taking limits:

D↓0
lim

{g : ′gi=gi± Ds, i=1,…,n}
∑ 1{b(g;D)≤0} ≤ 2n − 1.

Moreover, for those g for which ′gi = gi ± Ds for all i = 1, . . . , n we 
have, by the assumed continuity of the density in the closure of the 
range of inaction, that:

D↓0
lim f ( ′g1 ± Ds,… , ′gn ± Ds; D) =

D↓0
lim f ( ′g ; D) = f ( ′g ).

Hence we have that taking limits on equation (B1) for values of ′g  for 
which b( ′g ; D) = 0:
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f ( ′g ) =
D↓0
lim f ( ′g ; D)

≤ (1 − r)
D↓0
lim(1 − r) 1

2
1 + p D

s

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟
n

g : ′gi= gi± Ds{ }
∑ f (g; D)1 b(g;D)≤0{ }

+ r
1
2 D↓0

lim[ f ( ′g − Ds; D) + f ( ′g + Ds; D)]

= rf ( ′g ) + (1 − r) f ( ′g ) 1
2( )n (2n − 1)

= f ( ′g ) 1 − (1 − r) 1
2( )n⎡

⎣⎢
⎤
⎦⎥

,

or f ( ′g ) ≤ f ( ′g )[1 − (1 − r)(1 / 2)n] which again requires that f ( ′g ) = 0. 

Proof (of Lemma 2). To establish the desired result in the general multi-
product case, we first develop an expression for an upper bound of I(d), 
denoted by I (d). We will show that I(0) = I (0), that I(d) ≤ I (d), and that 
′I (0) = 0, which implies the desired result ′I (0) = 0. Instead, the 

 upper- bound function I (d) is given by:

I (d) = n
−∞

∞

∫ ! −∞

∞

∫ g(g1−d,g2−d,…,gn−1−d)

g(g1−d,g2−d,…,gn−1−d)+d

∫ f (g1, g2,… , gn)dgn
⎡
⎣⎢

⎤
⎦⎥
dgn−1!

⎡
⎣⎢

⎤
⎦⎥
dg1,

where the set Gn−1 and the function g : Gn−1 → R are defined as:

Gn−1 ≡ {g1, g2,… , gn−1 ∈ Rn−1 : ∃gn ∈ R

such that (g1, g2, g3, ..., gn) ∈ I}

g(g1, g2,… , gn−1) ≡
x

min{x : (g1, g2,… , gn−1, x) ∈ I}

for (g1, g2,… , gn−1) ∈ Gn−1.

I (d) as n times the number of firms that adjust its price on impact be-
cause one price has gotten below the lower sS bound (for simplicity we 
have taken this to be the n price gap, but given exchangeability, it does 
not matter which one it is). The reason why I (d) in an upper bound of 
I(d) is that in I  there is some double counting. The double counting 
comes from the fact that for some values of g there may have been lower 
boundaries corresponding to more than one price gap that are crossed 
after the shock δ. This establishes that I(d) ≤ I (d). That I (0) = 0 it fol-
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lows directly from its definition, since the last intergral is performed in 
a degenerate interval if δ = 0. Finally we have:

′I (d) = n
−∞

∞

∫ ! −∞

∞

∫ ∂
∂d g(g1−d,g2−d,…,gn−1−d)

g(g1−d,g2−d,…,gn−1−d)+d

∫ f (g1, g2,… , gn)dgn
⎡
⎣⎢

⎤
⎦⎥
dgn−1!

⎡
⎣⎢

⎤
⎦⎥
dg1

with 

∂
∂d g(g1−d,g2−d,…,gn−1−d)

g(g1−d,g2−d,…,gn−1−d)+d

∫ f (g1, g2,… , gn)dgn

= f (g1, g2,… , g(g1 − d, g2 − d,… , gn−1 − d))

which equals zero when evaluated at δ = 0, since f(g1, g2, . . . , g(g1, g2, 
. . . , gn–1)) is the density at the boundary of the range of inaction. Thus 
′I (0) = 0. 

Appendix C

Random Observation Cost

In this appendix we describe the setup for observation cost and signals. 
The time line in figure C1 describes the structure of the observation cost 
ʹco, the associated signal ζ, and production cost z = (z1,… , zn) that oc-

curs at the time ti and at the time of the next observation ti+1, which is 
min{Ti, si} periods after the current observation ti. In another words, Ti 
is decided at ti.

Immediately after paying the observation cost at time ti , the firm 
learns the current value of (z1, . . . , zn) and receives a signal ζ, which is 
informative about the future realizations of the observation cost ′co. Re-
call that at time ti the firm decides its planned elapsed time until the 
next observation Ti. Recall that the firm also reviews at an exogenous 
exponentially distributed time si with parameter λ. Thus the time 
elapsed until next observation will occur at the earliest time between si, 
which is a random variable, or Ti, which as of time ti is decided, and 
thus known, that is, nonrandom. Summarizing the time for the i + 1 
observation is given by ti + min{si, Ti}.

The signal ζ summarizes all the information about the value of the 
observation cost to be paid T = min{si, Ti} periods from now. Mathe-
matically we write F(c ′o ;T | z) to be the CDF of the observation cost ′co 
to be paid T periods after the current observation, conditional on the 
signal ζ. The dependence of the distribution F on T allows the distribu-

This content downloaded from 128.135.003.116 on January 19, 2018 13:13:46 PM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



Are State-  and Time- Dependent Models Really Different?  439

tion of the observation cost c ′o  to vary with the time elapsed between 
observations. The functions F and G fully characterize the process for 
the observation cost, and provide enough flexibility to cover cases dis-
cussed in the literature as well as generalizations that we find useful. 
The expected observation cost is the key input to decide T.

Upon the next observation, when a particular cost ′co is realized, a 
new signal ′z  is drawn from the CDF G(⋅|c ʹo). The other key input to de-
cide T is the distribution of zj(ti+1) conditional on z(ti), which, given the 
assumption that the log of {zj} are random walks, we can summarize 
them as L(⋅;T|z). These distributions allows to compute the benefit of 
gathering information, that is, of choosing a small value of Ti.

In this setup we can obtain several of the cases analyzed in the litera-
ture. For instance, the model of deterministic observation times studied 
by Caballero (1989) and Reis (2006) is encompassed by our framework 
if the signal is uninformative about the future observation cost, which 
is the case if F( ′co, T0|z0) = F( ′co, T1|z1) for all ʹco and all pairs (T0, z0). In this 
case, the distribution G is irrelevant because, given that the signal is 
uninformative, the mechanism to obtain the new signal is irrelevant.

Another case discussed in the literature is one where the firm’s obser-
vation times are i.i.d., as proposed by Reis (2006). This setup provides a 
foundation to i.i.d. observation times: the firm has to draw a signal 
about the future observation cost that is both informative about the next 
observation cost and independent of all other shocks (including the cur-
rent value of the observation cost). In this case, the particular form of 
the distribution G is relevant. Formally, observation times are i.i.d. in 
our model if and only if G(z|!co) = G(z|co) for all ζ and all pairs !co, co. The 
distribution F shapes the precision of the signal. Finally, the more gen-
eral case where G(z|!co) ≠ G(z|co) for at least some ζ and some pairs !co, co 
allows us to extend our analysis to the case of observation times corre-
lated over time, a case which we find more reasonable than the i.i.d. 
assumption.

Fig. C1. Time Line
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Appendix D

Time-  and State- Dependent Firms’ Problem

In the multiproduct Calvo+ model the firms solves:

{ti,DPj(ti), j=1,...,n, i=1,2,...,}
max E

0

∞

∫ e−rtP(P1(t), ..., Pn(t), Z1(t), ..., Zn(t),W(t);

c(t))dt −
i=1

∞

∑e−rticm1{dU(ti)=1}W(ti)

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Pj(t) = Pj(ti) for all t ∈ (ti, ti+1] and DPj(ti) =
´↓0
limPj(ti + )́ − Pj(ti),

 (D1)

where {U(t)} is a Poisson process with intensity λ.
In the problem with observation and menu cost the firm solves

{ti, a(ti),DPj(ti), j=1,...,n, i=1,2,...}
max E

0

∞

∫ e−rtP(P1(t), ..., Pn(t), Z1(t), ..., Zn(t),W(t);

c(t)) dt −
i=1

∞

∑e−rtico[1 + a(ti)cm]W(ti)

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

, (D2)

where τi+1 = Ti + τi where Ti is the time between observations, Ti and a(τi)
∈ {0, 1} only depend on information gathered at τ0, τ1, . . . , τi, Pj(t) = Pj(s) 
for all s, t ∈ (ti, ti+1) and

DPj(ti) = ´↓0
limPi(ti + )́ − Pi(ti) if a(ti) = 1

0 if a(ti) = 0.

⎧
⎨
⎪

⎩⎪

We simplify the problem assuming that both observation and menu 
costs are nonrandom.

Appendix E

Trade- Off of Sticky Price Models around Zero Inflation

In all the microfounded models, we consider the nominal price upon 
adjustment is reset at the optimal price maximizing level, that is, the 
price gap is “closed,” so that the size of the price adjustment is equal to 
(minus) the price gap, or Dgi = −D log Pi. In this broad class of models 
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we have that the following property holds for any decision rules and 
n ≥ 1:

N(Dpi; 0) Var(Dpi; 0) = s2, and ∂
∂p

[N(Δpi; p)Var(Δpi; p)] |p=0= 0, (E1)

which states that the total number of price adjustments per period de-
noted by N(Dpi; p) times the variance of the size of price changes, 
Var(Dpi; p) equals the variance of the innovations to the price gaps s2. 
This equation, which holds for any policy for inflation around zero, 
which ends up closing the price gap upon adjustments (even nonopti-
mal policies) highlights the key  trade- off of a sticky price problem, that 
between the frequency of costly adjustments, or information gathering, 
versus the mean deviation of nominal prices from their optimal level.

Appendix F

Sensitivity of Impact Effect to Inflation

In this section we derive the case of a  state- dependent model with one 
good n = 1. We explicitly write the barriers and the optimal return point 
as function of inflation for a given σ > 0. At zero inflation we have: 
g(0) = −g(0) > 0 and g*(0) = 0. We would like to obtain an expansion of 
I(d, p). We have

I(d; p) = f (g(p); p)d + 1
2

ʹf (g(p); p)d2 + 1
6

ʹ́f (g(p); p)d3 + o(d3)

= 1
2

ʹf (g(p); p)d2 + 1
6

ʹ́f (g(p); p)d3 + o(d3),

where ′f  and ′′f  denote the derivatives of the density with respect to g, 
and where ′fp and ′′fp  denote the (cross) derivatives with respect to π. 
Note that at π = 0, f (⋅, 0) is linear so that ′′f (g, 0) = 0. We thus have:

I(d; p) = I(d; 0) + 1
2

∂
∂p

′f (g(0); 0)pd2 + o(! (d, p) !3)

= 1
2

′f (g(0); 0)d2 + 1
2

∂
∂p

′f (g(0); 0)pd2 + o(! (d, p) !3)

= 1
2

1
g(0)2

d2 + 1
2

∂
∂p

′f (g(0); 0)pd2 + o(! (d, p) !3).
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To be more precise, the density depends on inflation directly, in the de-
pendence of the Kolmogorov forward equation on π:

 
0 = ′f (g; p, g, g, g*)p + ′′f (g; , g, g, g*) s2

2

for all g ∈ [g, g], g ≠ g*,
 (F1)

as well as, indirectly on g(p), g(p) and g*(p), which depend on π. We 
have:

∂
∂p

ʹf (g(0); 0, g(0), g(0), g*(0)) = ʹ́f (g(0); 0)g9(0) + ʹfp(g(0); 0)

+ ʹfg(g(0); 0, g(0), g(0), g*(0))g9(0)

+ ʹfg(g(0); 0, g(0), g(0), g*(0)) ʹg (0)

+ ʹf
g*

(g(0); 0, g(0), g(0), g*(0))g* (́0),

where we use that at π = 0 the density is linear in g, that is, 

 f (g, 0) =
g − g(0)
g(0)2

forg ∈ [g(0), 0) (F2)

and hence its derivative ′f  does not depend on g. Thus we have:

I(d; p) = 1
2

1
g(0)2

d2 + 1
2

′fp(g(0); 0)pd2 + o(! (d, p) !3).

We first study the effect of inflation on ′f  keeping the thresholds g, g  
and the optimal return point g* fixed as we change inflation. Thus, we 
only study the direct effect of inflation on ′f . To do this, we first deter-
mine f and its derivatives. The density f solves the Kolmogorov forward 
equation at all g ≠ g* = 0. Furthermore, we use that the density is zero 
at the exit points. Thus there must be two constants B and B:

 f (g, a) =
B(a)(eag − eag) if g ∈ [g, g*]

B(a)(eag − eag) if g ∈ [g*, g]

⎧
⎨
⎪

⎩⎪
 (F3)

where we use a to denote the nonzero root of the characteristic equation 
for the solution of the KF equation:

 a = −2p / s2. (F4)
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We describe the two equations for the constants B(a) and B(a). Continu-
ity of the density f (⋅, a) at g* = 0 gives

B(a)(eag* − eag) = B(a)(eag* − eag)

and integrates to one:

1 =
g

g

∫ f (g, a)dg =
g

g*

∫ B(a)(eag − eag)dg +
g*

g

∫ B(a)(eag − eag)dg.

We are interested in:

 ′f (g(0); 0) =
a→0
limB(a)aeag(0) = 1

g(0)2
and (F5)

 ′fp(g(0); 0) = − 2
s2 a→0

lim
∂
∂a

B(a)aeag(0) |a=0. (F6)

Solving for B we have:

1 = B(a) eag* − eag

a
− eag(g* − g)⎛

⎝⎜
⎞
⎠⎟

+ B(a) eag − eag*

a
− eag(g − g*)( )

= B(a) eag* − eag

a
− eag(g* − g)⎛

⎝⎜
⎞
⎠⎟

+ B(a)
eag* − eag( )
eag* − eag( )

eag − eag*

a
− eag(g − g*)( ) ,

where we use that the density integrates to one and that it is continuous 
at zero. Then

1 = B(a)

eag* − eag

a
− eag(g* − g)

+ eag* − eag

eag* − eag
eag − eag*

a
− eag(g − g*)( )

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

= −B(a) eag(g* − g) + eag* − eag

eag* − eag
eag(g − g*){ }

= −B(a) eag* − eag

eag* − eag
eag(g* − g) + eag* − eag

eag* − eag
eag(g − g*){ }

= − B(a)
eag* − eag

{(eag* − eag)eag(g* − g) + (eag* − eag)eag(g − g*)},
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using that g = −g and g* = 0 at π = 0:

1 = − B(a)
eag* − eag

(g − g*){(eag* − eag)eag + (eag* − eag)eag}

= −B(a) (g − g*)
eag* − eag

{eag*eag − 1 + eag*eag − 1}

= −B(a) g
1 − eag

{e−ag − 1 + eag − 1},

or 

B(a) = − (1 − eag)
g(e−ag − 1 + eag − 1)

< 0 since a < 0.

We thus have:

g2 ′f (g, a) = C(a) ≡ g2B(a)ae−ag = − a(e−a − 1)
(e−a − 1 + ea − 1)

= − 1
2( ) −a2 + a3 / 2 − a4 / 3! + !

a2 / 2 + a4 / 4! + a6 / 6! + !

= − 1
2( ) −1 + a / 2 − a2 / 3! + !

1 / 2 + a2 / 4! + a4 / 6! + !

where a ≡ ag < 0.

Note that direct computation gives

C(0) = 1 and ′C (0) = − 1
2

.

Thus:

′f (g, p) = 1
g2

C − 2p

s2
g( ) → 1

g2
and

′fp(g, 0) = − 2g
s2g2

′C 0( ) = 1
s2g

.

This content downloaded from 128.135.003.116 on January 19, 2018 13:13:46 PM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



Are State-  and Time- Dependent Models Really Different?  445

Appendix G

Accuracy of Proposition 2 in Models with Both Menu and 
Observation Costs

We numerically evaluate the accuracy of the approximation in Proposi-
tion 2 in models that feature the simultaneous presence of a menu cost 
cm > 0 as well as an observation cost co > 0. The main parameter to be 
specified for this analysis is the ratio between the two fixed costs: 
a ≡ cm / co. Notice that for the special case of the observation cost 
only (cm = 0 so that a = 0) as well as the special case of the menu cost 
only (co = 0 so that a → ∞), we have supplied an analytic proof of the 
proposition in Alvarez, Le Bihan, and Lippi (2016) for cm > 0, co = 0 
and in Alvarez, Lippi, and Paciello (2016) for co > 0, cm = 0.

To analyze the problem with 0 < a < ∞ we use the decision rules 
derived in Alvarez et al. (2011), and numerically compute the invariant 
distribution of firms in a steady state. This is a joint density defined 
over the time until the next review and the value of each firm price gap. 
We then develop the impulse response analysis by shocking the steady 
state of the economy and computing the under the impulse response. 
There is essentially one parameter in this analysis, a , since the two 
fixed costs enter the problem as a ratio and the policy functions are 
homogenous, so that the results only depend on the ratios of particular 
moments (e.g., frequency of adjustment versus frequency of observa-
tion; see Alvarez et al. [2011] for details). In practice, we normalize the 
value of N = 1 in all the models we consider and vary α so that the 
models will generate different steady state levels of kurtosis.

Figure G1 summarizes the results of our numerical analysis. The ver-
tical axis plots the ratio of the area under the output impulse, numeri-
cally computed, and the approximation of the same object given by the 
ratio of the  steady- state moments Kurt(Dpi) / N(Dpi) as suggested in 
Proposition 2 . We consider a set of models where 0 < a < 5. The 
model uses a weekly time period and a cross section of 100,000 firms, 
and a monetary shock equal to 1%, that is, d = 0.01. It appears that the 
numerical accuracy of the proposition is within ±5% of the actual cumu-
lative effect and, more importantly, that the accuracy does not display a 
systematic variation with respect to α.
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446 Alvarez, Lippi, and Passadore

Appendix H

Additional Data Documentation

Table H1 reports more summary statistics for the countries used in 
the analysis. The criterion for including a  country- month observation 
in the sample is that the 60- month centered moving average inflation 
in that month is below 8% (per year) and a per- capita GDP in that 
 country- month of at least $5,000 (PPP). Columns titled Mean Inf., Sd. 
Inf., Mean Dev., and Sd. Dev. contain the mean and standard deviation 
of inflation and exchange rate devaluations against the US dollar in all 
months for which the country is included in the sample. Columns ti-
tled Big5, Big10, Big20, Big30, and Big40 indicate the number of months 
with devaluations of at least X%, for X = 5, 10, 20, 30, and 40, respec-
tively. The number of  country- month observations is contained in the 
column titled Obs.

Fig. G1. Ratio between actual and approximate cumulative output effect
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Endnotes

We benefited from the comments of our discussants John Leahy and Greg Kaplan, and 
of other conference participants. Part of the research for this paper was sponsored by the 
ERC advanced grant 324008. Joaquin Saldain and Jean Flemming provided excellent re-
search assistance. For acknowledgments, sources of research support, and disclosure of the 
authors’ material financial relationships, if any, please see http://www.nber.org/chapters/
c13768.ack.

1. In the first class of models the firm’s decision to adjust prices depends on the state, 
while in the latter class it depends only on the time elapsed since the last price change.

2. Small shocks are indeed central to several previous analyses both because they natu-
rally emerge as the residuals in a regression, as typical in the empirical VAR literature 
(e.g., Christiano, Eichenbaum, and Evans 1999; Christiano, Eichenbaum, and Evans 2005), 
or because they provide convenient conditions for analytical approximations (e.g., Cabal-
lero and Engel 2007; Alvarez and Lippi 2014).

3. As in previous studies, one note of caution is due: the regression coefficient can be 
interpreted as a measure of the response of inflation to an exogenous nominal exchange 
rate innovation under the assumption that the shock is orthogonal to the other regressors 
and unanticipated. This assumption, which we discuss in the empirical analysis, is not 
appropriate whenever the exchange rate innovations occur in response to shocks that also 
affect other domestic variables, including inflation itself.

4. We are thankful to our discussant Greg Kaplan for pointing this out.
5. Gagnon et al. (2012) use disaggregated firm- level data and analyze how exchange 

rate devaluations impact on the timing of price adjustments, a feature that is consis-
tent with  state- dependent models. Their findings are consistent with the presence of 
 state- dependent pricing rules.

6. It is worth noting that other papers in the literature of sticky prices have suggested 
nonlinear response to shocks. For example, Burstein (2006) studies the nonlinear response 
of inflation and output to monetary shock when firms choose price plans.

7. The approach is standard and has been used in, for example, Caballero and Engel 
(2007).

8. This example assumes a unit elasticity of output to real wages.
9. Technically, this last result depends on the  continuous- time and  continuous- path na-

ture of the shocks, but its qualitative implications also apply to  discrete- time  discrete- state 
versions of this model.

10. Theoretically the result extends to small inflation since in the presence of idiosyncratic 
shocks the drift has a  second- order impact on decision rules, such as the frequency of price 
adjustments (see Alvarez et al. [2011] for a proof in a model with both TD and SD compo-
nents). For evidence supporting this claim see Gagnon (2009) and Alvarez et al. (2015), who 
show that decision rules are quite insensitive to the inflation for rates that are below 10%.

11. For more discussion and evidence on the equivalence between the area under the 
impulse response function and the variance due to monetary shocks, see footnote 21 of 
Nakamura and Steinsson (2010).

12. The selection effect, a terminology introduced by Golosov and Lucas (2007), indi-
cates that firms that change prices after the monetary shock are the firms whose prices are 
in greatest need of adjustment, a hallmark of SD models.

13. Alternative definitions of moderate inflation are used: our baseline requires that 
the mean inflation rate is below X% in a 10- year time window centered on the observa-
tion date. Our baseline results use X = 8 but results are robust to using a threshold of X = 
6. Smaller thresholds reduce the number of large devaluations observed in sample. The 
mean unconditional annual inflation in our baseline sample is below 4% (see the sum-
mary statistics reported in table 1).

14. This is a marginal improvement of the early analysis of Caballero and Engel (1993), 
who measured the inflation response during the year after the shock.

15. Our baseline specification uses simple nonlinear projections as suggested in Jorda 
(2005), but results are robust to the distributed lag specification commonly used in the 
international economics literature.
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16. To be precise, devaluation is computed as Dei,t = (ei,t / ei,t−1 − 1) × 100 where ei,t is 
the end of the period bilateral exchange rate of country i against the United States, and 
inflation is computed as pi,(t,t+h) = (pi,t+h / pi,t − 1) × 100 where h = 1, 3, 6, 12, 24 months 
and pi,t is the price level reported for period t. Note that the CPI pi,t is constructed using 
prices that are sampled during period t; that is, between the end of period t – 1 and the end 
of period t.

17. This result is robust to alternative classifications of the de facto ER regime, such as 
Ilzetzki, Reinhart, and Rogoff (2008)] used in the table versus the one by Levy- Yeyati and 
Sturzenegger (2003), which includes fewer countries and was used by us for a robustness 
check.

18. See equations (A1) and (A2) in appendix A for a model where price gaps are de-
rived from primitives.

19. See Alvarez and Lippi (2014) for an analytical characterization of the optimal stop-
ping barrier y , as well as the implication for the size distribution of price changes f (Dpi).

20. See section VI and appendix E of Alvarez and Lippi (2014) for a proof.
21. To be more precise, in the Mankiw and Reis (2002) model prices will change every 

period to keep up with the mean expected marginal cost. This gives rise to a very high 
frequency of price changes that diverges as the model moves to continuous time. This fea-
ture is a common element in models of rational inattentiveness that lack a physical cost of 
price adjustment. A robust pattern in the data is, however, that prices change infrequently. 
A simple way to obtain infrequent price changes in this class of models is to assume that 
the level of the nominal marginal cost is a martingale. As a result, price changes only oc-
cur when new information arrives, so that the frequency of price changes coincide with 
the frequency of observations. Moreover, in Alvarez et al. (2011) we show that price plans 
would not be optimal even in the presence of a drift in the nominal marginal cost, when 
a price adjustment cost is added to a similar model and calibrated to match the frequency 
of price changes in the US economy.

22. We do this for two reasons. First, when we introduce menu as well as observation 
costs, price plans will not be optimal for small departures of a martingale–see Proposi-
tion 1 in Alvarez et al. (2011). Second, if costs are not martingale and there are no menu 
costs, then price changes will occur as frequently as the model time periods, which will 
be highly counterfactual.

23. In appendix C we give more details on the structure of the cost and signals.
24. In Alvarez, Lippi, and Paciello (2016), Propositions 7 and 11 show that for any 

distribution of times, a distribution of signals and cost on future observation costs can 
be found that provides a foundation to it. This can be used to rationalize the work of 
researchers that start their analysis directly with the assumption that times between ob-
servations (and price changes) are i.i.d. through time with a given distribution, and study 
their implications for monetary policy (e.g., Bonomo et al. 2010).

25. For simplicity, and because its effects are mainly covered by the Calvo+, we abstract 
from the exogenous observation times featured in equation (14) for the time- dependent 
case.

26. The first result in Proposition 1 concerns the impact effect on prices and output of 
a once- and- for- all monetary shock. The second result is for the GE version of our model, 
where we use the cumulative output response of an once- and- for- all monetary shock, that 
is, the area under the impulse response for output, as defined in equation (20). The result 
for the impact effect is more general in scope: for instance, it holds for all levels of the 
inflation rate π = 0 and holds if h ≠ r , and/or if there is correlation between the idiosyn-
cratic shocks across the products of the firm, that is, if s > 0. Indeed, for the first result 
we only use the form of the decision rules, either they be  state- dependent Ss rules as in 
equation (9) , or time- dependent rules as in equation (14) . The second result in Proposi-
tion 2 is obtained analytically for a smaller class of economies, and with the GE interpreta-
tion of this shock. In particular, it is obtained around a zero inflation rate, and we also 
restrict the analysis to the case of same elasticity of substitution ρ = η, and no correlation 
between idiosyncratic shocks, that is, s = 0.

27. To understand this equation notice that the monetary shock increases the desired 
prices of all firms by the same amount δ. This implies a decrease by an amount δ of all 
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price gaps gki that are not adjusted on impact (the gaps !gki  are unaffected by definition). 
This explains the presence of the term δ in the equation.

28. In Proposition 3 of Alvarez et al. (2015), we show analytically for the same model 
that at around zero inflation only 10% of the changes in inflation are accounted for 
changes in the thresholds, and instead 9/10 are accounted for by changes in the frequency 
of price increases versus price decreases. This means that ignoring the changes in thresh-
olds, as in the approximation above, makes a very small difference.

29. For a symmetric distribution kurtosis is a  scale- free statistic describing its peaked-
ness: the extent to which “large” and “small” observations (in absolute value) appear 
relative to intermediate values.

30. Intuitively, a lot of selection gives rise to small kurtosis. For example, in the 
 Golosov- Lucas model, price changes are concentrated around two values: very large and 
very small, which imply the smallest value of kurtosis (equal to one). In contrast, the size 
distribution of price adjustments in a multiproduct model with a large number of goods 
is normally distributed, that is, it features a large mass of small as well as very large price 
changes. This results in less selection, fully captured by the higher kurtosis of the size 
distribution.

31. See Kiley (2002), Sheedy (2010), Carvalho and Schwartzman (2015), and Alvarez, 
Lippi, and Paciello (2016).

32. Notice how these features are captured by kurtosis: in Taylor the constant time 
between adjustments T implies that price changes are drawn from a normal distribution, 
hence kurtosis is three. In Calvo, instead, the exponential distribution of adjustment times 
implies that price changes are drawn from a mixture of normals with different variances, 
and hence a higher kurtosis (equal to six).

33. To be precise for SD models, it follows by setting λ = 0, or equivalently ℓ = 0, in the 
model in Alvarez, Le Bihan, and Lippi (2016), and the results correspond to Proposition 6 
of that paper.

34. Again, this corresponds to Proposition 6 of that paper, for the case where λ > 0 and 
ψ > 0, or equivalently the case where ℓ ∈ (0, 1].

35. These computations take advantage that we have a characterization of the decision 
rules that allows to compute a simple problem for each ratio of the menu- to- observation 
cost, free of any other parameters.

36. We can take d(p) = g(p)max − g(p)min where g(π)max = {inf x : (x, . . . , x) ≥ (g1, . . . , gn) 
for all g ∈ I(p)} and g(p)min = {sup x : (x,… , x) ≤ (g1,… , gn) for all g ∈ I(p)}.

37. In terms of the data by choosing CPI and Exchange rate against the United States 
and working at a monthly frequency we take an alternative route from the literature that 
studies the exchange rate pass through; see, for example, Campa and Goldberg (2005), 
Bussiere (2013), and the Handbook Chapter in Burstein and Gopinath (2014). The reasons 
for studying CPI and the exchange rate against the US dollar are to obtain as many ob-
servations as possible (monthly time series for import prices and effective exchange rate 
are available only for a subset of countries), and because the model outlined in section III 
is better suited for the pricing decisions of retailers. In addition, we work at a monthly 
frequency to better approximate impact effects. It is worth noting that by using Import 
prices and effective exchange rates we still find some weak evidence of nonlinearity. This 
evidence is in line with Bussiere (2013).

38. With monthly data this amounts to the following restriction: An observation for 
country i in period t is in the sample if pi,t

MA = (∑k=−60
k=60 pi,t+ k) / 120 ≤ K = 0.08. We check 

robustness of our findings for different windows (24, 36, 48 months) and inflation values 
(4, 6, 8, and 10%).

39. We also focus on countries that have a GDP per capita higher than 5,000 USD 
whenever the value of GDP per capita is available. We use the World Bank National Ac-
counts Data, with data available after 1990 on a monthly basis. Also, we focus on coun-
tries that have populations that are higher than two million inhabitants.

40. To be precise, devaluation is computed as Dei,t = (ei,t / ei,t−1 − 1) × 100 where ei,t is 
the end- of- the- period bilateral exchange rate of country i against the United States and 
inflation is computed as pi,(t,t+h) = (pi,t+h / pi,t − 1) × 100 where h = 1, 3, 6, 12, 24 months 
and pi,t is the price level reported for period t. Note that the CPI pi,t is constructed using 
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prices that are sampled during period t; that is, between the end of period t – 1 and the end 
of period t.

41. This specification differs from the ones usually estimated in the literature that stud-
ies exchange rate pass- through (see, e.g., Campa and Goldberg [2005], and the Handbook 
Chapter by Burstein and Gopinath [2014]) in two dimensions. First, instead of estimating 
equation (36) without a nonlinear term (i.e., gh = 0), several papers estimate a distributed 
lag regression.

 pi,t = ai + dt +
s=0

T

∑bsDei,t− s + ´it
p. (35)

It can be shown that under the identifying assumption that the exchange rate follows a 
random walk the two specifications, distributed lags versus linear projections, are analo-
gous. Second, our specification in equation (34) introduces a nonlinear term. An excep-
tion is Bussiere (2013). This paper runs cross country and  country- by- country nonlinear 
specifications and finds nonlinearities in the pass- through of the effective exchange rate 
into import and export prices.

42. We thank our discussant Greg Kaplan for suggesting this alternative specification.
43. We assume that the preference shocks satisfy Aki(t) = Zki(t)h−1 so that the share of 

expenditure on different goods are constant in the frictionless case. This convenient as-
sumption was used by Woodford (2009), Bonomo et al. (2010) Midrigan (2011), and Alva-
rez and Lippi (2014).
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