
Online Appendix980

A Representative Agent Economy981

A.1 RA: Environment982

Notation closely follows that of the main text. There exists a representative household983

that chooses real consumption flows c̃jt to maximize984

∫
e−ρ̃t

c̃1−γjt

1− γ
dt (A.1)

Initial nominal assets A0 are given. The household faces a flow budget constraint985

dAt = [itAt + (1− τt)Ptyt − Ptc̃t]dt (A.2)

subject to the borrowing constraint At ≥ 0, where τt is a path of taxes set by the986

government. We may express the budget constraint in real de-trended terms as987

dat = [rtat + (1− τt)− ct]dt (A.3)

where the real rate is defined as rt := it − πt − g. Government debt dynamics follow988

dbt = [rtbt − τt]dt (A.4)

We also impose the commonly maintained assumption in the fiscal theory of the price989

level that the government can borrow, but not lend: bt ≥ 0.990

Household Optimality. It is easy to show that the solution to the representative991

household problem yields the Euler equation992

ρ− rt = −γ 1

ct(at)

dct(at)

dt
(A.5)

together with the household’s transversality condition993

lim
t→∞

e−ρtc−γat ≤ 0 (A.6)

Monetary Policy. We allow for arbitrary monetary policy rules it, but assume994

that they lead to well-defined paths for inflation given real rates rt (see Section 2.3).995
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A.2 RA: Equilibrium Definition996

We now define a real equilibrium under the assumption that the price level Pt is997

differentiable for all t > 0.998

Definition 2. A real equilibrium is a collection of variables {ct, at, bt, rt}t≥0 such that:999

1. For all t > 0, ct satisfies the Euler equation (A.5) and transversality condition1000

(A.6).1001

2. For all t > 0, at evolves according to the budget constraint (A.3).1002

3. For all t > 0, bt evolves according to the government budget constraint (A.4).1003

4. For all t ≥ 0, markets clear: at = bt.1004

Note that by Walras’ Law, ct = 1 for all t ≥ 0 so that the goods market clears.1005

A.3 RA: Uniqueness With Constant Surpluses1006

Next, we show that a real unique equilibrium exists whenever τ = τ ∗ > 0, so that1007

the government is running constant surpluses. First, note that the Euler equation1008

(A.5) along with market clearing for output ct = 1 implies that rt = ρ for all t ≥ 0.1009

Integrating the government budget constraint forwards then yields (A.4):1010

b0 = lim
T→∞

[∫ T

0

e−ρtτ ∗dt+ e−ρT bT

]
(A.7)

By transversality (A.6) and market clearing, the latter term must be non-positive.1011

Moreover, it cannot be negative as this would violate the non-negativity constraint1012

on household assets and/or the assumption that the government cannot be a lender.1013

Hence, it must be zero. But this then implies that1014

b0 = lim
T→∞

[∫ T

0

e−ρtτ ∗dt

]
=
τ ∗

ρ
(A.8)

so b0 is well-defined and strictly positive for any level of initial nominal assets B0.1015

The dynamics for real debt {bt}t>0 are then pinned down by the government budget1016

constraint (A.4). This proves the existence of a unique real equilibrium.1017

Given an initial level of nominal debt B0, uniqueness of the real equilibrium implies1018

uniqueness of the initial price level P0. Subsequent inflation is uniquely pinned down1019

by rt = ρ, and a monetary policy rule which sets the path for the nominal rate it.1020
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The Case of Deficits. The analysis above requires that the present discounted1021

value in (A.8) be finite and positive. Hence, running persistent deficits cannot be1022

an admissible equilibrium under the assumption that (i) households face borrowing1023

constraints or (ii) that aggregate government debt must be non-negative.1024

B Representative Agent with Bonds-In-Utility1025

B.1 RA-BIU: Environment1026

Our notation follows closely that of the main text. Time is continuous and indexed1027

by t. The economy is populated by a representative agent that derives utility from1028

consumption streams ct and real asset holdings at according to:1029 ∫
e−ρt

(
c1−γt

1− γ
+ ζ ln(at + a)

)
dt (B.1)

where ρ > 0 denotes the household’s discount rate, and ζ, a are positive constants.1030

Our assumption that real assets enter utility in a logarithmic fashion is inessential1031

to the main results. However, logarithmic utility will allow us to characterize the1032

steady-states of the economy in closed-form.1033

As derived in Section A.1 at all points in time in which the price level is differen-1034

tiable, the household budget constraint can be written in real terms as follows:1035

dat = [rtat + (1− τt)yt − ct] dt (B.2)

where rt = it − πt denotes the real interest rate on bonds. The government budget1036

constraint can similarly be written in real terms as:1037

dbt = [rtbt − τtyt]dt (B.3)

We also impose the commonly maintained assumption in the fiscal theory of the price1038

level that the government can borrow, but not lend: bt ≥ 0.39 To simplify the exposi-1039

tion, in this section only, we assume zero growth. Positive growth is straightforward1040

to incorporate by letting ζ grow over time at the appropriate rate.1041

39As explained in the context of the RA model of Section A, this can also be rationalized through
a borrowing constraint on the household side.
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Household Optimality. The representative household takes the future sequence of1042

real rates rt and output yt as given, and chooses consumption and real asset holdings1043

optimally subject to its budget constraint (B.2). This implies the following Euler1044

Equation1045

1

ct

dct
dt

=
1

γ

(
rt − ρ+

ζcγt
a+ a

)
(B.4)

The household must also satisfy the following transversality condition:1046

lim
t→∞

e−ρtc−γt at ≤ 0 (B.5)

B.2 RA-BIU: Equilibrium Definition1047

The definition of equilibrium for this model is exactly as in Section A.2, with the1048

exception that the Euler equation is given by (B.4).1049

Price Level Determination. As in the main text, each real equilibrium defines a1050

unique price level determined by:1051

P0 =
B0

b0
(B.6)

The path of inflation is then determined residually through the Fisher identity πt =1052

it− rt. We assume for simplicity a monetary policy peg, it = i∗, but note that all our1053

results on equilibrium uniqueness extend to the more general monetary rules outlined1054

in Section 2.3.1055

B.3 RA-BIU: Uniqueness with Constant Surpluses1056

We now show that a unique real equilibrium exists under a constant, strictly positive1057

surplus rule τt = τ ∗, where τ ∗ > 0.1058

Proposition 1. A unique real equilibrium exists. Moreover, rt = r∗ and bt = b∗ for1059

all t ≥ 0, where r∗ and b∗ are strictly positive constants that are given by:1060

r∗ =


−(τ∗+ζ−ρa)+

√
(τ∗+ζ−ρa)2+4ρaτ∗

2a
if a > 0

ρτ∗

τ∗+ζ
if a = 0

(B.7)

and1061

b∗ =
τ ∗

r∗
(B.8)
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Proof. Our proof proceeds in several steps.1062

Step 1: Monotonicity of real assets. We first show that at is increasing if at > a∗1063

and decreasing if at < a∗, where a∗ > 0 is the unique steady-state value of real debt.1064

We then show that this implies that at < a∗ at any t violates the non-negativity1065

constraint on debt. Finally, we show that at > a∗ at any t is inconsistent with1066

household optimality.1067

First, note that equation (B.4) together with ct = 1 at all t implies that the real1068

rate is given by the following equation for all t1069

rt = ρ− ζ
1

at + a
(B.9)

Imposing market clearing and using the government budget constraint (B.3), we can1070

derive an expression for the dynamics of real debt1071

ȧt =

(
ρ− ζ

1

at + a

)
at − τ ∗ (B.10)

where ȧt ≡ dat
dt
. The steady-states of this differential equation are given by1072

τ ∗

a∗
= ρ− ζ

1

a∗ + a
(B.11)

Note that the left-hand side of the above equation is decreasing in a∗ whenever τ ∗ > 01073

(and asymptotes to zero as a∗ → ∞ and infinity as a∗ → 0), while the right-hand1074

side is increasing in a∗ (and asymptotes to ρ > 0 as a∗ → ∞). Moreover, both terms1075

are continuous for a∗ > 0. Hence, a unique steady-state with a strictly positive real1076

rate exists. Denote this real rate by r∗ > 0.1077

Further, ȧt is strictly positive whenever at ∈ (a∗,∞) and strictly negative when-1078

ever at ∈ (0, a∗). Suppose otherwise. We have that:1079

dȧt
da

|at=a∗= r∗ + ζa∗(a∗ + a)−2 > 0 (B.12)

Moreover, ȧt is continuously differentiable on at > 0. Hence, ȧt(at) < 0 for some1080

at ∈ (a∗,∞) would imply that there exists an a∗∗ ∈ (a∗,∞) such that ȧt(a
∗∗) = 0,1081

thereby violating steady-state uniqueness.1082
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Step 2: Ruling Out Downwards Explosions. Next, we rule out all equilibria in1083

which at′ < a∗ for some t′ ≥ 0. By Step 1, at′ < a∗ implies that at′ < at for all t
′ ≥ t.1084

Moreover, there are no limit points such that limt→∞ at = a∗∗ for any a∗∗ > 0. Hence,1085

any path in which at′ < a∗ implies that the constraint at > 0 must be violated in1086

finite time.1087

Step 3: Ruling Out Upwards Explosions. We now rule out equilibria in which1088

at′ > a∗ for some t′ ≥ 0. We may integrate the government budget constraint (B.3)1089

forwards to obtain1090

a0 = lim
T→∞

[∫ T

0

exp

(∫ s

0

−rudu
)
τ ∗ds+ exp

(∫ T

0

−rudu
)
aT

]
(B.13)

Note that rt > 0 whenever at > a∗, so the first term in the limit is well-defined.1091

Moreover, (B.3) implies that assets will be growing at rate rt whenever at ≥ a∗.1092

Hence, the second-term is non-zero if and only if at′ ≥ a∗ for some t′ ≥ 0.1093

We now show that household optimality implies that this second term must nec-1094

essarily be finite. Substituting for the real rate, we obtain:1095

lim
T→∞

[
exp(−ρT )aT × exp

(∫ T

0

ζ
1

au + a
du

)]
(B.14)

The first-term in this expression is zero by the transversality condition (B.5). The

second term is bounded as assets are growing at an exponential rate. Hence, we must

have at = a∗ and rt = r∗ for all t ≥ 0. Equation (B.13) then implies that the second

term is zero and thus a0 must be given by

a0 =

∫ ∞

0

exp

(∫ s

0

−r∗du
)
τ ∗ds =

τ ∗

r∗
= a∗ (B.15)

Substituting for a∗ in (B.9) yields a quadratic equation with a unique, strictly positive1096

root given by (B.7). This completes the proof.1097

1098

The intuition for this result closely mirrors that of the representative agent econ-1099

omy. The system of equations (B.3) and (B.4) are globally unstable. Paths in which1100

b0 < b∗ therefore lead to downward explosions, which violate the non-negativity con-1101

dition on debt. Paths in which b0 > b∗ lead to an excessive accumulation of assets,1102
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(a) Surpluses (b) Deficits

Note: Dynamics for real assets in the RA-BIU economy when τ∗ > 0 (left panel) and τ∗ < 0
(right panel), as given by (B.3) and (B.4)

thereby violating household optimality. These dynamics are graphically depicted in1103

Figure 13a. Note that r∗ is strictly increasing in τ ∗, with r∗ → ρ and a∗ → ∞ as1104

τ ∗ → ∞. In this sense, the steady-state asset demand in the RA-BIU economy (B.18)1105

exhibits many similar features to the heterogeneous agent economy considered in the1106

main text.1107

B.4 RA-BIU: Dynamics with Constant Deficits1108

Next, we consider dynamics under constant deficits τ ∗ < 0. We show that the price1109

level is generally no longer determinate for a given value of initial nominal debt. In-1110

tuitively, the steady-states of the government accumulation equation (B.3) form an1111

upward sloping locus in r − b space, as depicted graphically in Figure 13b. This can1112

give rise to steady-state multiplicity, eliminating the explosive dynamics that are re-1113

quired in order to obtain uniqueness. The following proposition formally characterizes1114

the nature of this steady-state multiplicity.1115

Proposition 2. Suppose ρa < ζ. Then:1116

1. If a = 0, a unique steady-state exists if τ ∗ ∈ (−ζ, 0), and no steady-state exists1117

if τ ∗ ∈ (−∞,−ζ].1118

2. If a > 0, there exists a τ ∈ (ρa− ζ, 0) such that two distinct steady-states exist1119

if τ ∗ ∈ (τ , 0), no steady-state exists if τ ∗ ∈ (−∞, τ), and a unique steady-state1120

exists if τ ∗ = τ1121
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Proof. We may substitute for steady-state assets in (B.9) to obtain1122

r∗ = ρ− ζ
τ∗

r∗
+ a

(B.16)

We may solve the above equation to express the steady-states of the system as:1123

r∗ =


−(τ∗+ζ−ρa)±

√
(τ∗+ζ−ρa)2+4ρaτ∗

2a
if a > 0

ρτ∗

τ∗+ζ
if a = 0

(B.17)

and1124

a∗ =
τ ∗

r∗
(B.18)

where we additionally require r∗ < 0 so that the non-negativity constraint on assets1125

is not violated. It is straightforward to see that this condition is satisfied if and only1126

if τ ∗ > −ζ when a = 0. This proves the first part of the proposition.1127

To prove the second part of the proposition, note a necessary and sufficient con-1128

dition for r∗ < 0 in the constant deficit economy is τ ∗ ∈ (ρa − ζ, 0) and that1129

(τ ∗ + ζ − ρa)2 + 4ρaτ ∗ > 0. This is negative at τ ∗ = ρa − ζ, positive at τ ∗ = 0,1130

and strictly increasing on (ρa − ζ, 0). Hence, there exists a unique root of this ex-1131

pression within this interval given by τ ∈ (ρa− ζ, 0). It follows that are two distinct1132

steady-states whenever τ < τ ∗ < 0, no steady-states whenever τ ∗ < τ and a unique-1133

steady state whenever τ ∗ = τ .1134

The condition ρa < ζ ensures that there exists a negative interest rate such that1135

households are willing to hold strictly positive amounts of real assets (no steady-1136

state with deficits exists trivially if this condition is not satisfied). Note also that,1137

depending on the value of a, zero, one, or two equilibria can exist. Further, at least1138

one equilibrium exists as long as the level of deficits is not too large. We next show1139

how steady-state multiplicity is tied to price level determinacy. In particular, a unique1140

equilibrium exists if and only if a unique steady-state exists.1141

Proposition 3. The following statements are true.1142

1. If no steady-state exists, then no real equilibria exist.1143

2. If a unique steady-state exists, then there exists a unique real equilibrium with1144

constant real rates rt = r∗H = r∗L and real assets bt = b∗H = b∗L.1145
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3. If two distinct steady-states exist, then there exists a continuum of real equilibria1146

indexed by b0 ∈ (0, b∗H ].1147

Proof. Suppose no steady-states exist. Equation (B.3) then implies that real assets1148

will tend to infinity or minus infinity for any given b0. The former case is ruled out,1149

as it violates the transversality condition by Proposition 1. The latter case is ruled1150

out as it implies that assets will violate their non-negativity constraint in finite time.1151

Hence, no equilibria exist.1152

Next, suppose that a unique steady-state exist. Define the function1153

r(at) = ρ− ζ

at + a
(B.19)

From (B.3), steady-states are given by the roots to1154

g(a) = r(a)− τ ∗

a
(B.20)

There exists a unique a∗ such that g(a∗) = 0 by assumption. Moreover, g(a) → ρ > 0

as a→ ∞, so we must have g′(a∗) > 0 by the intermediate value theorem. Using the

government accumulation equation, the dynamics of real debt around a∗ are given by

d
ãt
dt

= [r′(a∗)a∗ + r(a∗)]ãt

= [r′(a∗) +
τ ∗

(a∗)2
]
ãt
a∗

= g′(a∗)
ãt
a∗

> 0

where ãt = at − a∗, to first-order. Because a∗ is unique by assumption, real assets1155

explode upwards exponentially at a rate rt when a0 > a∗ (violating (B.5)) and down-1156

wards when a0 < a∗ (violating the non-negativity of assets in finite time). Hence, a1157

unique equilibrium exists.1158

Suppose now that two equilibria exist a∗H > a∗L. The top equilibrium is locally1159

unstable by the argument presented above. The bottom equilibrium is locally stable,1160

since g(a) → ∞ as a → ∞. Hence, g′(a∗L) < 0. This implies that all equilibria1161

with b0 ∈ (0, b∗H) converge to b∗L, while all equilibria with b0 > b∗H feature explosive1162

dynamics that violate (B.5). Thus, there exist a continuum of equilibria indexed by1163

b0 ∈ (0, b∗H ].1164

One can show that the presence of two steady-states imply a non-singular basin1165
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of attraction for the economy. Hence, a continuum of real equilibria, indexed by their1166

initial condition b0, are possible. Note that the final condition places a lower bound1167

on the price level for any given level of initial nominal assets, given by P0 =
B0

b∗H
.1168

C Additional Derivations1169

C.1 Derivation of Optimal Consumption Dynamics1170

This section derives expressions for the consumption dynamics of unconstrained con-1171

strained households.1172

Unconstrained Households. We show that the expected consumption dynamics1173

for unconstrained households are given by1174

Et [dcjt]
cjt

=
1

γ
(rt − ρ) dt+

1

γ

∑
z′

λzjtz′

(
c(ajt, z

′,Ωt)

cjt

)−γ

dt+
∑
z′

λzjtz′

(
c(ajt, z

′,Ωt)

cjt

)
dt.

(C.1)

Here we use the short-hand notation cjt := c(ajt, zjt,Ωt) to denote the consumption1175

of household j at time t. Recall the HJB Equation:1176

ρVt(a, z) = max
c
u(c)+st(a, z)∂aV (a, z)+

∑
z′ ̸=z

λz,z′ [Vt(a, z
′)−Vt(a, z)]+∂tVt(a, z) (C.2)

where u(c) = c1−γ

1−γ and st(a, z) is the savings function (11). The FOC is:1177

u′(c) = ∂aVt(a, z) (C.3)

Differentiating the above with respect to a yields1178

u′′(ct(a, z))∂act(a, z) = ∂2aaVt(a, z) (C.4)

Differentiating with respect to t yields1179

u′′(ct(a, z))∂tct(a, z) = ∂2atVt(a, z) (C.5)
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The envelope condition for (C.2) is:1180

ρ∂aVt(a, z) = ∂2aaVt(a, z)st(a, z)+rt∂aVt(a, z)+
∑
z′ ̸=z

[∂aVt(a, z
′)−∂aVt(a, z)]+∂2atVt(a, z)

(C.6)

Using (C.4) and (C.5) into the equation above yields:1181

(ρ− rt)u
′(ct(a, z)) =

∑
z′ ̸=z

λzz′ [u
′(ct(a, z

′))− u′(ct(a, z))]

+u′′(ct(a, z))[∂tct(a, z) + st(a, z)∂act(a, z)]

(C.7)

(C.7) holds at any point on the interior of the state space a > 0 (i.e. for all uncon-1182

strained households). Using Ito’s lemma for jump processes, we can write it as:1183

(ρ− r)u′(ct(aj, zj)) =
dE[u′(ct(aj, zj))]

dt
(C.8)

where we suppress the dependence of ajt and zjt on t for notational simplicity. Fur-1184

thermore, using Ito’s lemma on ct(aj, zj) yields1185

dcj =

∂act(aj, zj)st(aj, zj) + ∂tct(aj, zj) +
∑
z′ ̸=zj

λzjz′ [ct(aj, z
′)− ct(aj, zj)]

 dt
+[ct(aj, z

′)− ct(aj, zj)]dÑj

(C.9)

where Ñj is the compensated Poisson process for the stochastic process of income z′.1186

Expected consumption therefore follows:1187

E[dcj] =

∂act(aj, zj)st(aj, zj) + ∂tct(aj, zj) +
∑
z′ ̸=zj

λzjz′ [ct(aj, z
′)− ct(aj, zj)]

 dt
(C.10)

We may combine this with (C.7) to obtain1188

(ρ− rt)u
′(ct(aj, zj)) =

∑
z′ ̸=zj

λzjz′ [u
′(ct(aj, z

′))− u′(ct(a, zj))]

+u′′(ct(aj, zj))
E[dcj]
dt

− u′′(ct(aj, zj))
∑
z′ ̸=zj

λzjz′ [ct(aj, z
′)− ct(aj, zj)]

(C.11)
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This yields (C.1) after dividing by u′′(ct(aj, zj)) and specializing to u′(c) = c1−γ

1−γ1189

Constrained Households. We show that the expected consumption dynamics for1190

borrowing constrained households satisfy:1191

1192

Et [dcjt]
cjt

=
∑
z′

λzjt,z′

(
c(ajt, z

′,Ωt)

cjt

)
dt. (C.12)

The consumption dynamics for constrained households are given by1193

dct(0, zj) =
∑
z′ ̸=zj

λzjz′ [ct(0, z
′)− ct(0, zj)]dt+ [ct(0, z

′)− ct(0, zj)]dÑj (C.13)

since households consume their income whenever constrained (until receiving a more1194

favourable income draw). Taking expectations and dividing by ct(0, zj) then yields1195

(C.12) directly.1196

C.2 Existence of r1197

This subsection shows that there exists a finite r such that no household saves in a1198

stationary equilibrium if r ≤ r. Suppose no such r exists. Note that this implies1199

that there must exist a non-zero mass of households that are unconstrained in any1200

stationary equilibrium, for all r < ρ.1201

Proposition 2 in Achdou et al. (2022) shows that there exists a finite upper bound

on the state space for assets in a stationary equilibrium. Moreover, z > 0. Hence,

marginal utility and consumption are bounded from above and are strictly greater

than zero for all ajt and zjt. Equation (C.1) then implies that there must exist an r

such that
E[dct(ajt, zjt)]

dt
< 0

for all households j that are unconstrained. But this would then imply that aggregate1202

consumption must be decreasing, which would violate market clearing. Hence, there1203

cannot exist a non-zero mass of households that are unconstrained in a stationary1204

equilibrium with r < r. But this implies the existence of such an r, a contradiction.1205
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C.3 Uniqueness with Constant Surpluses1206

In this section, we show that explosive paths for real assets are ruled out by the1207

household transversality condition. Our proof strategy entails decomposing the ex-1208

pectation in (24) and aggregating across households to show that the rate of growth1209

of aggregate assets is bounded below by the discount rate ρ.1210

Consider a strictly positive sequence of real rates (rt)t≥0. Recall that the transver-1211

sality condition in the stochastic economy is:1212

lim
t→∞

[Et exp(−ρt)u′(ct(ajt, zjt))ajt] = 0 (C.14)

The household Euler equation gives us a differential equation for the evolution of1213

expected marginal utility.1214

E0[du
′(ct(ajt, zjt))]

u′(c0(aj0, zj0))
= (ρ− rt)dt (C.15)

We may solve this ordinary differential equation to obtain1215

E0[u
′(ct(ajt, zjt))] = u′(c0(aj0, zj0)) exp

(
ρt−

∫ t

0

rsds

)
(C.16)

We next decompose the expectation term in the household transversality condition:1216

lim
t→∞

[E0 exp(−ρt)u′(ct(ajt, zjt))ajt] = lim
t→∞

[exp(−ρt)E0 [u
′(ct(ajt, zjt))]E0 [ajt]

+ exp(−ρt)Cov0(u′(ct(ajt, zjt)), ajt)]
(C.17)

where the covariance is conditional on the households’ time-zero information set. We1217

may substitute for the first term using (C.16) to obtain:1218

lim
t→∞

[
exp

(
−
∫ t

0

rsds

)
u′(c0(aj0, zj0))E0 [ajt] + exp(−ρt)Cov0(u′(ct(ajt, zjt)), ajt)

]
= 0

(C.18)

We may also bound the covariance term via the Cauchy-Schwarz inequality to obtain

exp(−ρt)Cov0(u′(ct(ajt, zjt)), ajt)| ≤ exp(−ρt)
√
Var0(u′(ct(ajt, zjt))

√
Var0(ajt)

≤ exp(−ρt)y
−γ
min

2

√
E0[(ajt)2]
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where last the inequality has made use of the fact that u′(cjt) ≤ y−γminand the Popoviciu1219

bound on variances (Bhatia and Davis, 2000). Finally, we provide a bound on the1220

variance of individual asset holdings. If asset holdings are uniformly bounded, the1221

bound is trivially zero. So we only need to concern ourselves with cases in which1222

individual assets may diverge to infinity. In these cases, we can use standard results1223

on the asymptotic behaviour of the consumption function to provide an upper bound1224

on assets (Benhabib et al., 2015; Achdou et al., 2022). In particular, we have:1225

lim
ajt→∞

ϕtajt
cjt

= 1 (C.19)

where ϕt > 0. We may then use the household budget constraint to show that assets1226

grow at a rate rt − ϕt asymptotically, which yields the bound1227

ajt ≤ Ξ exp

(∫ t

0

(rs − ϕs)ds

)
, a.s. (C.20)

for some finite Ξ > 0. Using the Popoviciu inequality once again, we obtain1228

| exp(−ρt)Cov0(u′(cjt), ajt)| ≤ exp(−ρt)y
−γ
min

4
Ξ exp

(∫ t

0

(rs − ϕs)ds

)
(C.21)

Under the assumption that there exists some t′ > 0 such that rt ≤ ρ for t ≥ t′, the1229

right-hand side vanishes as we take t → ∞. Section G provides sufficient condition1230

for rt < ρ for all t ≥ 0.1231

We now show that (C.18) precludes explosive paths for real aggregate debt. In1232

particular, we show that1233

lim
t→∞

[
exp

(∫ t

0

−rsds
)
at

]
= 0 (C.22)

where at is the amount of aggregate asset holdings in the economy at time t. To this
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end, we integrate (C.18) over households to obtain:

lim
t→∞

[∫
a,z

E0 exp(−ρt)u′(c0(a, z))adGt(a, y)

]

≤ lim
t→∞

m

exp
(
−
∫ t

0

rsds

)∫
a,y

Ea0=a [at] dGt(a, z)︸ ︷︷ ︸
āt

 = 0

where m is an upper bound on marginal utility at t = 0: u′(ci0(a
i)) ≤ m ∀a, y ∈1234

supp G0(a, y), a.e. and whereGt(·, ·) is the distribution over assets and income at time1235

t. Note that term in the integral in the second inequality is equal to aggregate asset1236

holdings by the exact law of large numbers (Duffie and Sun, 2012). This shows that1237

no equilibria exist in which government debt explodes upwards. Downward explosion1238

paths are ruled out by the non-negativity constraint on aggregate real debt.1239

C.4 Finite Difference Approximation1240

We begin by deriving the Kolmogorov Forward Equation (KFE) for wealth shares.1241

Note that the dynamics for wealth shares ωjt =
ajt
at

is given by1242

dωjt
ωjtdt

=
dajt
ajtdt

− db

btdt
(C.23)

Using Equations (6) and (18) yields

dωjt
dt

= ωjt

(
rtajt + zjt − τt(zjt)− cjt

ajt
− rtbt − st

bt

)
(C.24)

dωjt
dt

=
zjt − τt(zjt)− cjt + ωjtst

bt
(C.25)

This implies that the KFE for wealth shares is given by:1243

∂tf(ω, z) = A∗
ω[f, b](ω, z) +A∗

z[f ](z) (C.26)
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where1244

A∗
ω[f, b](ω, z) = ∂ω

[
f(ω, z)

z − τt(z)− ct(ω, z; f, b) + ωst
b

]
(C.27)

and1245

A∗
z[f ](z) = −f(ω, z)

∑
z′ ̸=z

λzz′ +
∑
z′ ̸=z

λz′zf(ω, z
′) (C.28)

where we have made the dependence of the consumption function on aggregate state1246

variables explicit. Note further that these operators are adjoint to underlying opera-1247

tors Aω and Az.1248

We may discretize the distribution f(ω, z) into N = Nω × Nz discrete points,1249

where Nω is a discrete grid for ω of width ∆ω. We denote the discretized distribution1250

as f and write the dynamics of the joint system as1251

df

dt
= Aω [ft, bt]

T ft +AT
z ft (C.29)

db

dt
= r [ft, bt] bt − s∗ (C.30)

The interest rate functional r [ft, bt] corresponds to the interest rate functional in1252

Equation (25) where we have substituted for the discretized endowment share distri-1253

bution. The matrix Aω [ft, bt] is a finite difference approximation to A[f, b] using the1254

appropriate upwind scheme (Achdou et al., 2022). Hence, it is a tridiagonal matrix1255

which consists of the following terms:1256 {
0,−z − τt(z)− ct(ω, z; f, b) + ωst

b∆ω

,
z − τt(z)− ct(ω, z; f, b) + ωst

b∆ω

}
(C.31)

The matrix Az is the Markov transition matrix for z in the product space ω × z.1257

Note that it is not indexed by z because the operator Az is linear. The rows of both1258

Aω [ft, bt] and Az sum to zero to ensure that ft preserves mass.1259

The linearized system can be exactly expressed as (31) if the effect of f on the1260

interest rate is small. A sufficient condition is that the real interest rate is invariant1261

to changes in the endowment share distribution, which would occur if consumption1262

functions were linear in wealth. However, because the interest rate functional uses a1263

consumption-based aggregator, in practice it is only necessary for the consumption1264

function to be linear amongst high-wealth households, who consume relatively more1265

of the aggregate endowment.1266
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C.5 Uniqueness with Zero Surpluses1267

The government accumulation equation with zero surpluses is1268

dbt = [r(Ωt)bt]dt (C.32)

This implies a steady-state interest rate of r∗ = 0 whenever a(0) > 0, with an1269

associated steady-state level of real debt given by b∗ ≡ a(0). The first-order dynamics1270

of this system around the steady-state are given by:1271

dbt = [b∗∂br(Ω
∗)]dt (C.33)

The last term is strictly positive due to household behaviour. Hence, the steady-state1272

is locally saddle-path stable. Since B0 > 0 is given, there exists a unique, finite value1273

of P0 such that the equilibrium converges back to the steady-state. There are also a1274

continuum of stationary real equilibria with P = ∞, in which r < r and aggregate1275

real debt is zero. This proves local uniqueness of the equilibrium. Conditions for1276

global uniqueness are outlined in Online Appendix C.3.1277

C.6 Steady-State Welfare Comparison1278

We show that steady-states with higher real interest rates are Pareto ranked for any1279

initial condition of assets ajt and income zjt. In particular, consider a particular1280

profile of income shocks {zjt}t≥0 that induces a (realized) consumption and savings1281

streams {cjt, ajt} under a constant real interest rate r∗L. This consumption plan can1282

also be implemented at a higher interest rate r∗H > r∗L for the same sequence of income1283

shocks, since the change in savings in any given period will be:1284

dajt = [(r∗H − r∗L)ajt]dt (C.34)

which is weakly positive for any given ajt > 0 (recall that the surplus s∗, and hence1285

taxes and transfers, are fixed and independent of the level of the real interest rate).1286

Higher interest rates weakly expand the budget set of all households for any given aj01287

and zj0. This proves that a steady-state with r∗H Pareto dominates r∗L.
40

1288

40This proof strategy follows Aguiar et al. (2021), who construct robust Pareto-improving policies
in the presence of capital accumulation.
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C.7 Unique Steady State with Real Debt Reaction Rule1289

Our argument for uniqueness proceeds in three steps. First, we derive conditions for1290

a unique steady-state. Second, we derive conditions for the steady-state to be saddle-1291

path stable. This ensures local uniqueness. Finally, we consider whether explosive1292

paths in debt can be ruled out globally. This ensures global uniqueness.1293

Steady-State Uniqueness. Suppose the government follows a fiscal rule of the1294

form:1295

st = s∗ + ϕb(bt − b∗) (C.35)

where s∗ = r∗b∗ is consistent with any given point on the household demand curve,1296

so that the tuple (b∗, r∗) = (a(r∗), r∗) with r∗ < 0. The government accumulation1297

equation is:1298

dbt = [rtbt − st]dt (C.36)

The null-clines of the government accumulation equation are then defined by the1299

following function:1300

r(b) =
s∗ − ϕbb

∗

b
+ ϕb (C.37)

A sufficient condition for steady-state uniqueness is that this function is downwards

sloping. This will ensure that it intersects the upwards sloping steady-state demand

curve a(r) exactly once. The slope of this function is

dr

db
= −s

∗ − ϕbb
∗

b2
(C.38)

= −r
∗b∗ − ϕbb

∗

b2
(C.39)

which is strictly negative whenever r∗ > ϕb. Hence, ϕb < r∗ < 0 is sufficient for1301

steady-state uniqueness.1302

Local Uniqueness. We now examine conditions for this fiscal rule to give rise to1303

local uniqueness. Under our maintained assumptions on the dynamical system that1304

obtain (31), local uniqueness amounts to checking whether the eigenvalues of the1305

government accumulation equation are strictly positive. The equilibrium dynamics1306

are:1307

dbt = [(r(Ωt)− ϕb)bt − (r∗ − ϕb)b
∗]dt (C.40)
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The first-order dynamics of this system around the steady-state are given by:1308

dbt = [r(Ω∗)− ϕb + b∗∂br(Ω
∗)]dt (C.41)

The last term is positive because of household behavior. The sum of the first two1309

terms are positive under the condition r∗ > ϕb. This proves local uniqueness.1310

Global Uniqueness. We now show that explosive dynamics are incompatible with1311

equilibrium. Online Appendix C.3 shows that a sufficient condition for explosive1312

dynamics to be inconsistent with equilibrium is for real debt to grow at a rate greater1313

than rt. But this follows from Equation (C.40) and ϕb < 0.1314

C.8 Unique Steady State with Real Rate Reaction Rule1315

Our argument for uniqueness proceeds in three steps, as before.1316

Steady-State Uniqueness. Suppose the government follows a fiscal rule of the1317

form:1318

st = s∗ + ϕr(rt − r∗) (C.42)

where s∗ = r∗b∗ is consistent with any given point on the household demand curve,1319

so that the tuple (b∗, r∗) = (a(r∗), r∗) with r∗ < 0. The government accumulation1320

equation is:1321

dbt = [rtbt − st]dt (C.43)

The null-clines of the government accumulation equation are then defined by the1322

following function:1323

r(b) =
(b∗ − ϕr)r

∗

b− ϕr
(C.44)

Our goal is to obtain an upward sloping function for the null-cline that intersects the1324

r-axis above a(r). This will ensure that it intersects the upwards sloping steady-state1325

demand curve a(r) exactly once, as in Figure 5b. The slope of this function is1326

dr

db
= −(b∗ − ϕr)r

∗

(b− ϕr)2
(C.45)

which is strictly positive whenever b∗ > ϕr. We also want the null-cline to intersect1327

the r-axis at a negative real interest rate that is greater than r (c.f. Figure 5b). This1328
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occurs if1329

ϕr <
s∗

r∗ − a−1(0)
(C.46)

Local Uniqueness. We now examine conditions for this fiscal rule to yield local1330

uniqueness. Under our maintained assumptions on the dynamical system that obtain1331

(31), local uniqueness amounts to checking whether the eigenvalues of the government1332

accumulation equation are strictly positive. The equilibrium dynamics are:1333

dbt = r(Ωt)(bt − ϕr)− (r∗ − ϕr)b
∗]dt (C.47)

The first-order dynamics of this system around the steady-state are given by:1334

dbt = [r(Ω∗) + (b∗ − ϕr)∂br(Ω
∗)]dt (C.48)

Note that at the top-right steady-state, we must have1335

r′(Ω∗) > −r
∗

b∗
(C.49)

which ensures that a sufficient condition for the right-hand side of (C.48) to be positive1336

is ϕr < 0. Hence, ϕr < 0 is a sufficient condition for local uniqueness.1337

Global Uniqueness. We now show that explosive dynamics are incompatible with1338

equilibrium. Online Appendix C.3 shows that a sufficient condition for explosive1339

dynamics to be inconsistent with equilibrium is for real debt to grow at a rate greater1340

than rt. But this follows from Equation (C.40) and ϕr < 0.1341

C.9 Local Dynamics with Interest Payment Reaction Rule1342

Steady-State Invariance. Suppose the government follows the fiscal rule:1343

st = s∗ + ϕs(rtbt − r∗b∗) (C.50)

where s∗ = r∗b∗ is consistent with any given point on the household demand curve,1344

so that the tuple (b∗, r∗) = (a(r∗), r∗) with r∗ < 0. The government accumulation1345

equation is:1346

dbt = [rtbt − st]dt (C.51)

20



The null-clines of the government accumulation equation are then defined by the

following function:

r(b) =
s∗ − ϕsr

∗b∗

b− ϕsb∗
=
s∗

b
(C.52)

which shows that the steady-states are unchanged. Hence, there is no scope for this1347

fiscal rule to eliminate steady-state multiplicity.1348

Local Dynamics. The dynamics of government debt are given by1349

dbt = (1− ϕs) (r(Ωt)bt − s∗) dt (C.53)

It follows that the stability properties of the two-steady states in the baseline case1350

with ϕs = 0 are reversed when ϕs > 1.1351

D Model With Foreign Demand for Debt1352

We assume that there exists a foreign sector that is populated by a representative1353

household. The foreign representative household derives utility over real consumption1354

streams and real debt holdings in terms of US goods.41 Preferences over foreign1355

consumption and bonds are given by1356

u (ct, dt) =
c1−γt

1− γ
+ ζ̃

d1−θt

1− θ

with γ ≥ 0 and θ ≥ 0. The parameter ζ̃ > 0 parameterizes the payoff derived from1357

real bond holdings. Households’ rate of time preference is ρ̃. We assume the foreign1358

sector grows at the same rate g as the domestic economy, thereby allowing for the1359

existence of a balanced growth path. The household’s growth-adjusted discount rate1360

is therefore ρ := ρ̃− (1− γ) g. In addition, we define rt := it − πt − g.1361

The household’s budget constraint in real and stationary terms is therefore1362

ddt = [rtdt + yf − ct]dt (D.54)

41Concretely, the foreign sector derives utility from nominal bonds in dollars divided by the US
price level: Bt/P

U
t S. This is equivalent to holding real debt in terms of the foreign sector good

(PF
t Bt/(P

F
t Bt)) where P

F
t is the foreign price level. The implicit assumption here is that the final

good is tradable, so that the exchange rate is constant.
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where yf > 0 is the foreign household’s endowment of the consumption good. Foreign1363

real consumption and real debt holdings must satisfy the following Euler equation:1364

·
ct
ct

=
1

γ

(
rt − ρ+ ζ̃

d−θt
c−γt

)
In steady-state, the aggregate consumption of the foreign sector is yf . Hence, for1365

a given interest rate r∗, we must have1366

0 = r∗ − ρ+
ζ̃

yf
d−θ

It follows that foreign sector demand for US government debt is given by1367

d(r∗) =

(
ρ− r∗

ζ

)− 1
θ

where we let ζ := ζ̃/yf . Note that the relationship between foreign debt holdings and1368

real interest rates can be written as:1369

log d = ζ +
1

θ
log(r∗ − ρ)

so a large θ means more inelastic demand.1370

Consider the limits of this function: as r∗ → −∞, d→ 0 and as r∗ → ρ, d→ ∞.1371

We want to argue that when the foreign demand is inelastic enough (θ large), we can1372

get rid of the high inflation steady-state. From Figure 5c, it is clear that what we1373

need is the bond supply function b (r) to lie above the total bond demand function1374

a(r) + d (r) as r → −∞. This condition can be re-written as:1375

lim
r→∞

b (r)

a (r) + d (r)
< 1

Or, equivalently1376

lim
b→0

rg (b)

rh (b) + rf (b)
< 1

where rg(b), rh(b), and rf (b) denotes the inverse debt demand functions for the gov-1377

ernment, domestic households, and the foreign sector, respectively. Substituting for1378
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these functional forms yields1379

lim
b→0

s
b

a−1(b) + (ρ− ζb−θ)

Online Appendix C.1 shows that there exists a finite real interest rate r such that1380

a(r) = 0. We may apply L’Hopital’s rule to obtain1381

lim
b→0

−s
b2 (κ+ θb−θ−1)

< 1

where κ is a finite positive constant. This inequality is satisfied if and only if

−s < θb1−θ

Recall that s < 0 so the LHS is a positive finite number. As long as θ > 1 the right-1382

hand-side converges to infinity as b → 0 which satisfies the inequality. Hence, the1383

condition we need in order to obtain steady-state uniqueness is θ > 1 which implies1384

that the foreign demand has to be inelastic enough.1385

E Extended Model for Quantitative Analysis1386

E.1 Model With Borrowing1387

In this section, we describe how the model is consistent with a non-zero lower bound1388

on real household assets and costly borrowing. Households face a borrowing limit1389

expressed in real terms:1390

Ajt
Pt

≥ ãt (E.55)

In order for the borrowing constraint to be consistent with balanced growth, we1391

assume that ãt grows at the rate of real output, ãt = y0e
gta for some a < 0. Note1392

that this implies that ajt ≥ a. Furthermore, we assume that borrowing is costly.1393

Households face a wedge ϑ ≥ 0 on the real interest rate when borrowing, so that the1394

interest rate they pay on debt is ϑ+rt. This borrowing wedge creates deadweight loss1395

in output that is equal to the wedge multiplied by the amount of assets borrowed.1396

This implies that aggregate consumption is slightly less than output (a difference1397

around 0.3% of steady-state output in our calibration). The associated boundary1398
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condition for the HJB equation (9) is:1399

∂aVt(0, z) ≥ (z − τt(z)− (rt + ϑ)a)−γ (E.56)

The government accumulation equation continues to follow equation (18), with the1400

understanding that bt ≥ 0, so that the government can lend, but not borrow.1401

E.2 Model With Long-Term Debt1402

The government now issues two securities: short-term debt Bs
t that pays a nominal1403

rate it, and long-term debt Bl
t. Long-term debt takes the form of depreciating consoles1404

that depreciate at a rate δ > 0, and that yield a flow coupon payment of χ > 0 as1405

in Cochrane (2001). We let qt denote the market value of this long-term bond. The1406

government’s budget constraint can be written as:1407

dBs
t + qtdB

l
t = [iBs

t + (χ− δqt)B
l
t − Ptst]dt (E.57)

The intuition for this equation is as follows. The right-hand side is the government’s1408

nominal deficit that consists of the primary deficit −Ptst, interest payments on short-1409

term debt iBs
t , and coupon payments plus redemption of long-term debt (χ− δqt)B

l
t.1410

Whenever the deficit is greater than zero, the government must issue additional debt.1411

It can do so either by issuing additional short-term debt or by issuing additional1412

long-term debt at the price of qt.1413

Similarly, we may define the nominal short- and long-term debt holdings of house-1414

hold j at time t as Asjt and A
l
jt, respectively. The household budget constraint becomes1415

dAsjt + qtdA
l
jt = [itA

s
jt + (χ− δqt)A

l
jt + (zjt − τt(zjt))Ptyt − Ptc̃jt]dt (E.58)

We define the market value of total government debt outstanding as Bt := Bs
t + qtB

l
t1416

and the total value of household assets as Ajt := Asjt+qtA
l
jt. We also define de-trended1417

real debt and assets as in the main text:1418

bjt =
Bt

Pt
and ajt =

Ajt
Pt

(E.59)

The next proposition demonstrates that there is maturity structure irrelevance for1419

government debt: bt and ajt are the only state variables in this economy.1420
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Proposition 4. The household budget constraint follows (6) and the real government1421

budget constraint follows (18) for t > 0. Moreover, the price of long-term debt satisfies1422

the following differential equation for t > 0:1423

q̇t
qt

+
χ− δqt
qt

= it (E.60)

Proof. See Not For Publication Appendix I1424

This proof shows that an economy with long-term debt collapses into an economy1425

with short-term debt in the absence of uncertainty. Equation (E.60) is an arbitrage1426

relationship between short- and long-term debt. In equilibrium, households are indif-1427

ferent between the two assets. Hence, long-term debt will only matter for inflation1428

dynamics insofar there is an unanticipated change in nominal rates it. Equation1429

(E.60) is a forward-looking equation.1430
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